
Gradient Boosting

Jan-Philipp Kolb

03 Juni, 2019

Jan-Philipp Kolb
Gradient Boosting



Gradient Boosting Machines (GBMs)

I GBMs are extremely popular, successful across many domains and
one of the leading methods for winning Kaggle competitions.

I GBMs build an ensemble of flat and weak successive trees with each
tree learning and improving on the previous.

I When combined, these trees produce a powerful “committee” often
hard to beat with other algorithms.

I The following slides are based on UC Business Analytics R
Programming Guide on GBM regression

Jan-Philipp Kolb
Gradient Boosting

https://www.kaggle.com/competitions
http://uc-r.github.io/gbm_regression


The idea of GBMs
I Many machine learning models are founded on a single predictive

model (i.e. linear regression, penalized models, naive bayes, svm).
I Other approaches (bagging, random forests) are built on the idea of

building an ensemble of models where each individual model predicts
the outcome and the ensemble simply averages the predicted values.

I The idea of boosting is to add models to the ensemble sequentially.
I At each particular iteration, a new weak, base-learner model is trained

with respect to the error of the whole ensemble learnt so far.

Jan-Philipp Kolb
Gradient Boosting

https://de.wikipedia.org/wiki/Support_Vector_Machine


Advantages of GBMs

Predictive accuracy
I GBMs often provide predictive accuracy that cannot be beat.

Flexibility
I Optimization on various loss functions possible and several

hyperparameter tuning options.

No data pre-processing required
I Often works great with categorical and numerical values as is.

Handles missing data
I Imputation not required.

Jan-Philipp Kolb
Gradient Boosting



Disadvantages of GBMs
GBMs overemphasize outliers

I This causes overfitting.
I GBMs will continue improving to minimize all errors. Use

cross-validation to neutralize.

Computationally expensive
I GBMs often require many trees (>1000) which can be time and

memory exhaustive.
I The high flexibility results in many parameters that interact and

influence heavily the behavior of the approach (number of iterations,
tree depth, regularization parameters, etc.).

I This requires a large grid search during tuning.

Interpretability
I GBMs are less interpretable, but this is easily addressed with various

tools (variable importance, partial dependence plots, LIME, etc.).
Jan-Philipp Kolb
Gradient Boosting

https://www.oreilly.com/learning/introduction-to-local-interpretable-model-agnostic-explanations-lime


Important concepts

Base-learning models
I Boosting is a framework that iteratively improves any weak learning

model.
I Many gradient boosting applications allow you to “plug in” various

classes of weak learners at your disposal.
I In practice, boosted algorithms often use decision trees as the

base-learner.

Jan-Philipp Kolb
Gradient Boosting



Training weak models
I A weak model has an error rate only slightly better than random

guessing.
I The idea behind boosting is that each sequential model builds a

simple weak model to slightly improve the remaining errors.
I Shallow trees represent weak learner - trees with only 1-6 splits.

Benefits of combining many weak models:
I Speed: Constructing weak models is computationally cheap.
I Accuracy improvement: Weak models allow the algorithm to learn

slowly; making minor adjustments in new areas where it does not
perform well. In general, statistical approaches that learn slowly tend
to perform well.

I Avoids overfitting: Making only small incremental improvements
with each model in the ensemble allows us to stop the learning
process as soon as overfitting has been detected (typically by using
cross-validation).

Jan-Philipp Kolb
Gradient Boosting

https://cran.r-project.org/web/packages/gbm/vignettes/gbm.pdf
https://bradleyboehmke.github.io/HOML/gbm.html
https://www.kdnuggets.com/2019/02/understanding-gradient-boosting-machines.html


Sequential training with respect to errors

I Boosted trees are grown sequentially;
I Each tree is grown using information from previously grown trees.
I x → features and y → response:
I The basic algorithm for boosted regression trees can be generalized:

1.) Fit a decission tree: F1(x) = y

2.) the next decission tree is fixed to the residuals of the previous:
h1(x) = y − F1(x)

3.) Add this new tree to our algorithm: F2(x) = F1(x) + h1(x)

4.) The next decission tree is fixed to the residuals of h2(x) = y − F2(x)

5.) Add the new tree to the algorithm: F3(x) = F2(x) + h1(x)

Continue this process until some mechanism (i.e. cross validation) tells us
to stop.

Jan-Philipp Kolb
Gradient Boosting



Boosted regression decision stumps as 0-1024
successive trees are added.

Jan-Philipp Kolb
Gradient Boosting

https://bradleyboehmke.github.io/HOML/gbm.html
https://bradleyboehmke.github.io/HOML/gbm.html


Boosted regression figure - explained

I The figure illustrates a single predictor (x) that has a true underlying
sine wave relationship (blue line) with y along with some irriducible
error.

I The first tree fit in the series is a single decision stump (i.e., a tree
with a single split).

I Each following successive decision stump is fit to the previous one’s
residuals.

I Initially there are large errors, but each additional decision stump in
the sequence makes a small improvement in different areas across the
feature space where errors still remain.

Jan-Philipp Kolb
Gradient Boosting



Loss functions

I Many algorithms, including decision trees, focus on minimizing the
residuals and emphasize the MSE loss function.

I In GBM approach, regression trees are fitted sequentially to minimize
the errors.

I Often we wish to focus on other loss functions such as mean
absolute error (MAE)

I Or we want to apply the method to a classification problem with a
loss function such as deviance.

I With gradient boosting machines we can generalize the procedure to
loss functions other than MSE.

Jan-Philipp Kolb
Gradient Boosting

https://en.wikipedia.org/wiki/Mean_absolute_error
https://en.wikipedia.org/wiki/Mean_absolute_error
https://en.wikipedia.org/wiki/Deviance_(statistics)


A gradient descent algorithm
I Gradient boosting is considered a gradient descent algorithm.
I Which is a very generic optimization algorithm capable of finding

optimal solutions to a wide range of problems.
I The general idea of gradient descent is to tweak parameters iteratively

in order to minimize a cost function.

Example
I Suppose you are a downhill skier racing against your friend.
I A good strategy to beat your friend is to take the path with the

steepest slope.
I This is exactly what gradient descent does - it measures the local

gradient of the loss (cost) function for a given set of parameters (Φ)
and takes steps in the direction of the descending gradient.

I Once the gradient is zero, we have reached the minimum.

Jan-Philipp Kolb
Gradient Boosting

https://en.wikipedia.org/wiki/Gradient_descent


Gradient descent (Geron, 2017).

Jan-Philipp Kolb
Gradient Boosting



Gradient descent
I Gradient descent can be performed on any loss function that is

differentiable.
I This allows GBMs to optimize different loss functions as desired
I An important parameter in gradient descent is the size of the steps

which is determined by the learning rate.
I If the learning rate is too small, then the algorithm will take many

iterations to find the minimum.
I But if the learning rate is too high, you might jump cross the

minimum and end up further away than when you started.

Jan-Philipp Kolb
Gradient Boosting



Shape of cost functions

I Not all cost functions are convex (bowl shaped).
I There may be local minimas, plateaus, and other irregular terrain of

the loss function that makes finding the global minimum difficult.
I Stochastic gradient descent can help us address this problem.
I Stochastic because the method uses randomly selected (or shuffled)

samples to evaluate the gradients.
I By sampling a fraction of the training observations (typically without

replacement) and growing the next tree using that subsample.
I This makes the algorithm faster but the stochastic nature of random

sampling also adds some random nature in descending the loss
function gradient.

I Although this randomness does not allow the algorithm to find the
absolute global minimum, it can actually help the algorithm jump out
of local minima and off plateaus and get near the global minimum.

Jan-Philipp Kolb
Gradient Boosting

https://en.wikipedia.org/wiki/Stochastic_gradient_descent


Tuning GBM

I GBMs are highly flexible - many tuning parameters
I It is time consuming to find the optimal combination of

hyperparameters

Number of trees
I GBMs often require many trees;
I GBMs can overfit so the goal is to find the optimal number of trees

that minimize the loss function of interest with cross validation.

Jan-Philipp Kolb
Gradient Boosting



Tuning parameters

Depth of trees
I The number d of splits in each tree, which controls the complexity of

the boosted ensemble.
I Often d = 1 works well, in which case each tree is a stump consisting

of a single split. More commonly, d is greater than 1 but it is unlikely
that d > 10 will be required.

Learning rate
I Controls how quickly the algorithm proceeds down the gradient

descent.
I Smaller values reduce the chance of overfitting but also increases the

time to find the optimal fit.
I This is also called shrinkage.

Jan-Philipp Kolb
Gradient Boosting



Tuning parameters (II)

Subsampling
I Controls if a fraction of the available training observations is used.
I Using less than 100% of the training observations means you are

implementing stochastic gradient descent.
I This can help to minimize overfitting and keep from getting stuck in

a local minimum or plateau of the loss function gradient.

Jan-Philipp Kolb
Gradient Boosting

https://en.wikipedia.org/wiki/Stochastic_gradient_descent


The necessary packages

library(rsample) # data splitting
library(gbm) # basic implementation
library(xgboost) # a faster implementation of gbm
library(caret) # aggregator package - machine learning
library(pdp) # model visualization
library(ggplot2) # model visualization
library(lime) # model visualization

Jan-Philipp Kolb
Gradient Boosting



The dataset

I Again, we use the Ames housing dataset

ames_data <- AmesHousing::make_ames()

set.seed(123)
ames_split <- initial_split(ames_data,prop=.7)
ames_train <- training(ames_split)
ames_test <- testing(ames_split)

Jan-Philipp Kolb
Gradient Boosting



Package implementation

The most popular implementations of GBM in R:

gbm
The original R implementation of GBMs

xgboost
A fast and efficient gradient boosting framework (C++ backend).

h2o
A powerful java-based interface that provides parallel distributed
algorithms and efficient productionalization.

Jan-Philipp Kolb
Gradient Boosting



The R-package gbm
I The gbm R package is an implementation of extensions to Freund and

Schapire’s AdaBoost algorithm and Friedman’s gradient boosting
machine.

Jan-Philipp Kolb
Gradient Boosting

https://en.wikipedia.org/wiki/AdaBoost
https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021/full
https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021/full


Basic implementation - training function
I Two primary training functions are available: gbm::gbm and

gbm::gbm.fit.
I gbm::gbm uses the formula interface to specify the model
I gbm::gbm.fit requires the separated x and y matrices (more

efficient with many variables).
I The default settings in gbm include a learning rate (shrinkage) of

0.001.
I This is a very small learning rate and typically requires a large number

of trees to find the minimum MSE.
I gbm uses the default number of 100 trees, which is rarely sufficient.
I The default depth of each tree (interaction.depth) is 1, which

means we are ensembling a bunch of stumps.
I We will use cv.folds to perform a 5 fold cross validation.
I The model takes about 90 seconds to run and the results show that

the MSE loss function is minimized with 10000 trees.

Jan-Philipp Kolb
Gradient Boosting



Train a GBM model
I distribution - depends on the response (e.g. bernoulli for binomial)
I gaussian is the defaulf value

set.seed(123)
gbm.fit <- gbm(formula = Sale_Price ~ .,distribution="gaussian",

data = ames_train,n.trees = 10000,interaction.depth = 1,
shrinkage = 0.001,cv.folds = 5,n.cores = NULL,verbose = FALSE)

print(gbm.fit) # print results

## gbm(formula = Sale_Price ~ ., distribution = "gaussian", data = ames_train,
## n.trees = 10000, interaction.depth = 1, shrinkage = 0.001,
## cv.folds = 5, verbose = FALSE, n.cores = NULL)
## A gradient boosted model with gaussian loss function.
## 10000 iterations were performed.
## The best cross-validation iteration was 10000.
## There were 80 predictors of which 45 had non-zero influence.

Jan-Philipp Kolb
Gradient Boosting



Exercise

I Take some time to dig around in the gbm.fit object to get
comfortable with its components.

Jan-Philipp Kolb
Gradient Boosting



The output object. . .

I . . . is a list containing several modelling and results information.
I We can access this information with regular indexing;
I The minimum CV RMSE is 29133 (this means on average our model

is about $29,133 off from the actual sales price) but the plot also
illustrates that the CV error is still decreasing at 10,000 trees.

Get MSE
sqrt(min(gbm.fit$cv.error))

## [1] 29133.33

Jan-Philipp Kolb
Gradient Boosting



Plot loss function as a result of n trees
added to the ensemble

gbm.perf(gbm.fit, method = "cv")

0 2000 4000 6000 8000 10000

1e
+

09
5e

+
09

Iteration

S
qu

ar
ed

 e
rr

or
 lo

ss

## [1] 10000

Jan-Philipp Kolb
Gradient Boosting



Tuning GBMs
I The learning rate is increased to take larger steps down the gradient

descent,
I The number of trees is reduced (since we reduced the learning rate),

and increase the depth of each tree.

set.seed(123)
gbm.fit2 <- gbm(formula = Sale_Price ~ .,

distribution = "gaussian",data = ames_train,
n.trees = 5000,interaction.depth = 3,shrinkage = 0.1,
cv.folds = 5,n.cores = NULL,verbose = FALSE)

# find index for n trees with minimum CV error
min_MSE <- which.min(gbm.fit2$cv.error)
# get MSE and compute RMSE
sqrt(gbm.fit2$cv.error[min_MSE])

## [1] 23112.1

Jan-Philipp Kolb
Gradient Boosting



plot loss function as a result of n trees
added to the ensemble

Assess the GBM performance:
gbm.perf(gbm.fit2, method = "cv")

0 1000 2000 3000 4000 5000

0e
+

00
4e

+
09

Iteration

S
qu

ar
ed

 e
rr

or
 lo

ss

## [1] 1260

Jan-Philipp Kolb
Gradient Boosting



Grid search

I n.minobsinnode is the minimum number of observations allowed in
the trees (nr. for terminal nodes is varied)

hyper_grid <- expand.grid(
shrinkage = c(.01, .1, .3),
interaction.depth = c(1, 3, 5),
n.minobsinnode = c(5, 10, 15),
bag.fraction = c(.65, .8, 1),
optimal_trees = 0,# a place to dump results
min_RMSE = 0

)

# total number of combinations
nrow(hyper_grid)

## [1] 81

Jan-Philipp Kolb
Gradient Boosting



Randomize data

I train.fraction use the first XX% of the data so its important to
randomize the rows in case there is any logic ordering (i.e. ordered by
neighborhood).

random_index <- sample(1:nrow(ames_train), nrow(ames_train))
random_ames_train <- ames_train[random_index, ]

Jan-Philipp Kolb
Gradient Boosting



Grid search - loop over hyperparameter grid

for(i in 1:nrow(hyper_grid)) {
set.seed(123)
gbm.tune <- gbm(

formula = Sale_Price ~ .,distribution = "gaussian",
data = random_ames_train,n.trees = 5000,
interaction.depth = hyper_grid$interaction.depth[i],
shrinkage = hyper_grid$shrinkage[i],
n.minobsinnode = hyper_grid$n.minobsinnode[i],
bag.fraction = hyper_grid$bag.fraction[i],
train.fraction = .75,n.cores = NULL,verbose = FALSE

)
# add min training error and trees to grid
hyper_grid$optimal_trees[i] <- which.min(gbm.tune$valid.error)
hyper_grid$min_RMSE[i] <- sqrt(min(gbm.tune$valid.error))

}

Jan-Philipp Kolb
Gradient Boosting



The top 10 values

hyper_grid %>%
dplyr::arrange(min_RMSE) %>%
head(10)

Jan-Philipp Kolb
Gradient Boosting



Loop through hyperparameter combinations
I We loop through each hyperparameter combination (5,000 trees).
I To speed up the tuning process, instead of performing 5-fold CV we

train on 75% of the training observations and evaluate performance
on the remaining 25%.

I The top model has better performance than our previously fitted
model, with a RMSE nearly $3,000 and lower.

A look at the top 10 models:
I None of the top models used a learning rate of 0.3; small incremental

steps down the gradient descent work best,
I None of the top models used stumps (interaction.depth = 1);

there are likely some important interactions that the deeper trees are
able to capture.

I Adding a stochastic component with bag.fraction < 1 seems to
help; there may be some local minimas in our loss function gradient,

Jan-Philipp Kolb
Gradient Boosting



Refine the search - adjust the grid

# modify hyperparameter grid
hyper_grid <- expand.grid(

shrinkage = c(.01, .05, .1),
interaction.depth = c(3, 5, 7),
n.minobsinnode = c(5, 7, 10),
bag.fraction = c(.65, .8, 1),
optimal_trees = 0,# a place to dump results
min_RMSE = 0# a place to dump results

)

# total number of combinations
nrow(hyper_grid)

## [1] 81

Jan-Philipp Kolb
Gradient Boosting



The final model

set.seed(123)
# train GBM model
gbm.fit.final <- gbm(formula = Sale_Price ~ .,

distribution = "gaussian",data = ames_train,
n.trees = 483,interaction.depth = 5,
shrinkage = 0.1,n.minobsinnode = 5,
bag.fraction = .65,train.fraction = 1,
n.cores = NULL, # will use all cores by default
verbose = FALSE)

Jan-Philipp Kolb
Gradient Boosting



Visualizing - Variable importance
I cBars allows you to adjust the number of variables to show

summary(gbm.fit.final,cBars = 10,
# also can use permutation.test.gbm
method = relative.influence,las = 2)

Kitchen_Qual
Full_Bath

First_Flr_SF
Total_Bsmt_SF

Gr_Liv_Area

Relative influence

0 10 20 30 40
## var rel.inf
## Overall_Qual Overall_Qual 4.084734e+01
## Gr_Liv_Area Gr_Liv_Area 1.323956e+01
## Neighborhood Neighborhood 1.100911e+01
## Total_Bsmt_SF Total_Bsmt_SF 5.513300e+00
## Bsmt_Qual Bsmt_Qual 5.149919e+00
## First_Flr_SF First_Flr_SF 3.884696e+00
## Garage_Cars Garage_Cars 2.354694e+00
## Full_Bath Full_Bath 1.953775e+00
## MS_SubClass MS_SubClass 1.169509e+00
## Kitchen_Qual Kitchen_Qual 1.137581e+00
## Exter_Qual Exter_Qual 8.995363e-01
## Garage_Area Garage_Area 8.545088e-01
## Second_Flr_SF Second_Flr_SF 8.078726e-01
## Year_Remod_Add Year_Remod_Add 8.069319e-01
## Lot_Area Lot_Area 8.061212e-01
## Bsmt_Unf_SF Bsmt_Unf_SF 6.700940e-01
## Screen_Porch Screen_Porch 6.287905e-01
## Mas_Vnr_Area Mas_Vnr_Area 5.378796e-01
## Fireplace_Qu Fireplace_Qu 5.275599e-01
## Bsmt_Exposure Bsmt_Exposure 5.222352e-01
## Overall_Cond Overall_Cond 5.183049e-01
## Fireplaces Fireplaces 4.554080e-01
## BsmtFin_Type_1 BsmtFin_Type_1 4.468654e-01
## Sale_Condition Sale_Condition 4.101765e-01
## Open_Porch_SF Open_Porch_SF 3.943423e-01
## Exterior_1st Exterior_1st 3.463541e-01
## Bsmt_Full_Bath Bsmt_Full_Bath 3.440837e-01
## Exterior_2nd Exterior_2nd 3.079716e-01
## Central_Air Central_Air 2.734017e-01
## Mo_Sold Mo_Sold 2.582696e-01
## Year_Built Year_Built 2.434284e-01
## Lot_Frontage Lot_Frontage 2.425687e-01
## Garage_Finish Garage_Finish 2.376064e-01
## Wood_Deck_SF Wood_Deck_SF 1.848544e-01
## Year_Sold Year_Sold 1.816664e-01
## Garage_Cond Garage_Cond 1.751730e-01
## Sale_Type Sale_Type 1.736894e-01
## Functional Functional 1.671529e-01
## Condition_1 Condition_1 1.430977e-01
## Latitude Latitude 1.374196e-01
## Bedroom_AbvGr Bedroom_AbvGr 1.085693e-01
## Longitude Longitude 8.963797e-02
## TotRms_AbvGrd TotRms_AbvGrd 6.957011e-02
## Land_Contour Land_Contour 6.944511e-02
## Heating_QC Heating_QC 6.385992e-02
## Roof_Matl Roof_Matl 5.282944e-02
## Lot_Shape Lot_Shape 5.174648e-02
## MS_Zoning MS_Zoning 4.682674e-02
## Bsmt_Cond Bsmt_Cond 4.254210e-02
## Land_Slope Land_Slope 4.174710e-02
## Lot_Config Lot_Config 3.995521e-02
## Enclosed_Porch Enclosed_Porch 3.824021e-02
## Garage_Type Garage_Type 3.550634e-02
## Paved_Drive Paved_Drive 3.457890e-02
## Heating Heating 3.199564e-02
## BsmtFin_Type_2 BsmtFin_Type_2 2.682602e-02
## BsmtFin_SF_2 BsmtFin_SF_2 2.316680e-02
## Roof_Style Roof_Style 2.215619e-02
## Mas_Vnr_Type Mas_Vnr_Type 1.987289e-02
## Half_Bath Half_Bath 1.862143e-02
## Alley Alley 1.838738e-02
## Condition_2 Condition_2 1.789231e-02
## Foundation Foundation 1.745666e-02
## Three_season_porch Three_season_porch 1.497737e-02
## Fence Fence 1.491262e-02
## House_Style House_Style 6.213166e-03
## Garage_Qual Garage_Qual 3.735267e-03
## Exter_Cond Exter_Cond 3.192945e-03
## Low_Qual_Fin_SF Low_Qual_Fin_SF 2.999387e-03
## Bsmt_Half_Bath Bsmt_Half_Bath 2.637569e-03
## BsmtFin_SF_1 BsmtFin_SF_1 2.135809e-03
## Misc_Val Misc_Val 1.544593e-03
## Bldg_Type Bldg_Type 1.197142e-03
## Electrical Electrical 1.191279e-03
## Pool_Area Pool_Area 9.890236e-04
## Street Street 0.000000e+00
## Utilities Utilities 0.000000e+00
## Kitchen_AbvGr Kitchen_AbvGr 0.000000e+00
## Pool_QC Pool_QC 0.000000e+00
## Misc_Feature Misc_Feature 0.000000e+00

Jan-Philipp Kolb
Gradient Boosting

https://topepo.github.io/caret/variable-importance.html


Variable importance

Jan-Philipp Kolb
Gradient Boosting



Partial dependence plots
I PDPs show the marginal effect one or two features have on the

predicted outcome.
I The following PDP plot displays the average change in predicted sales

price as we vary Gr_Liv_Area while holding all other variables
constant.

I We then average the sale price across all the observations.
I This PDP illustrates how the predicted sales price increases as the

square footage of the ground floor in a house increases.

Partial dependence plot - Gr_Liv_Area

gbm.fit.final %>% partial(pred.var = "Gr_Liv_Area",
n.trees = gbm.fit.final$n.trees,
grid.resolution = 100) %>%

autoplot(rug = TRUE, train = ames_train) +
scale_y_continuous(labels = scales::dollar)

Jan-Philipp Kolb
Gradient Boosting

https://christophm.github.io/interpretable-ml-book/pdp.html


Partial dependence plot

$180,000

$210,000

$240,000

$270,000

1000 2000 3000 4000 5000

Gr_Liv_Area

yh
at

Jan-Philipp Kolb
Gradient Boosting



Individual Conditional Expectation (ICE)
curves . . .

I . . . are an extension of PDP plots but the change in the predicted
response variable is plotted as we vary each predictor variable.

I When the curves have a wide range of intercepts and are
consequently “stacked” on each other, heterogeneity in the response
variable values due to marginal changes in the predictor variable of
interest can be difficult to discern.

I The centered ICE can help draw these inferences out and can
highlight any strong heterogeneity in our results.

I The results show that most observations follow a common trend as
Gr_Liv_Area increases;

I the centered ICE plot highlights a few observations that deviate from
the common trend.

Jan-Philipp Kolb
Gradient Boosting

https://christophm.github.io/interpretable-ml-book/ice.html
https://christophm.github.io/interpretable-ml-book/ice.html


Non centered ICE curve

ice1 <- gbm.fit.final %>%
partial(

pred.var = "Gr_Liv_Area",
n.trees = gbm.fit.final$n.trees,
grid.resolution = 100,
ice = TRUE
) %>%

autoplot(rug = TRUE, train = ames_train, alpha = .1) +
ggtitle("Non-centered") +
scale_y_continuous(labels = scales::dollar)

Jan-Philipp Kolb
Gradient Boosting



Centered ICE curve

ice2 <- gbm.fit.final %>%
partial(

pred.var = "Gr_Liv_Area",
n.trees = gbm.fit.final$n.trees,
grid.resolution = 100,
ice = TRUE
) %>%

autoplot(rug = TRUE, train = ames_train, alpha = .1,
center = TRUE) + ggtitle("Centered") +

scale_y_continuous(labels = scales::dollar)

Jan-Philipp Kolb
Gradient Boosting



Non centered and centered ice curve
gridExtra::grid.arrange(ice1, ice2, nrow = 1)

Jan-Philipp Kolb
Gradient Boosting



Local Interpretable Model-Agnostic
Explanations – (LIME)

I LIME is a newer procedure for understanding why a prediction
resulted in a given value for a single observation.

I To use the lime package on a gbm model we need to define model
type and prediction methods.

model_type.gbm <- function(x, ...) {
return("regression")

}

predict_model.gbm <- function(x, newdata, ...) {
pred <- predict(x, newdata, n.trees = x$n.trees)
return(as.data.frame(pred))

}

Jan-Philipp Kolb
Gradient Boosting

https://homes.cs.washington.edu/~marcotcr/blog/lime/
https://homes.cs.washington.edu/~marcotcr/blog/lime/
http://uc-r.github.io/lime


Applying LIME

I The results show the predicted value (Case 1: 118K Dollar, Case 2:
161K Dollar), local model fit (both are relatively poor), and the most
influential variables driving the predicted value for each observation.

# get a few observations to perform local interpretation on
local_obs <- ames_test[1:2, ]

# apply LIME
explainer <- lime(ames_train, gbm.fit.final)
explanation <- explain(local_obs, explainer, n_features = 5)

Jan-Philipp Kolb
Gradient Boosting



LIME plot
plot_features(explanation)

Jan-Philipp Kolb
Gradient Boosting



Predicting

I If you have decided on a final model you’ll likely want to use the
model to predict on new observations.

I Like most models, we simply use the predict function; we also need to
supply the number of trees to use (see ?predict.gbm for details).

I The RMSE for the test set is very close to the RMSE we obtained on
our best gbm model.

# predict values for test data
pred <- predict(gbm.fit.final, n.trees = gbm.fit.final$n.trees,

ames_test)

# results
caret::RMSE(pred, ames_test$Sale_Price)

## [1] 20606.76

Jan-Philipp Kolb
Gradient Boosting



xgboost
I The xgboost R package provides an R API to “Extreme Gradient

Boosting”, which is an efficient implementation of gradient boosting
framework (approx. 10x faster than gbm).

I The xgboost/demo repository provides a wealth of information.

Features include:
I Provides built-in k-fold cross-validation -Stochastic GBM with column

and row sampling (per split and per tree) for better generalization.
I Includes efficient linear model solver and tree learning algorithms.
I Parallel computation on a single machine.
I Supports various objective functions, including regression,

classification and ranking.
I The package is made to be extensible, so that users are also allowed

to define their own objectives easily.
I Apache 2.0 License.

Jan-Philipp Kolb
Gradient Boosting



Basic implementation

I XGBoost only works with matrices that contain all numeric variables;
consequently, we need to hot encode our data. There are different
ways to do this in R (i.e. Matrix::sparse.model.matrix,
caret::dummyVars) but here we will use the vtreat package.

I vtreat is a robust package for data prep and helps to eliminate
problems caused by missing values, novel categorical levels that
appear in future data sets that were not in the training data, etc.
vtreat is not very intuitive.

Jan-Philipp Kolb
Gradient Boosting



Application of vtreat to one-hot encode the
training and testing data sets.

# variable names
features <- setdiff(names(ames_train), "Sale_Price")
# Create the treatment plan from the training data
treatplan <- vtreat::designTreatmentsZ(ames_train, features,

verbose = FALSE)

# Get the "clean" variable names from the scoreFrame
new_vars <- treatplan %>%

magrittr::use_series(scoreFrame) %>%
dplyr::filter(code %in% c("clean", "lev")) %>%
magrittr::use_series(varName)

# Prepare the training data
features_train <- vtreat::prepare(treatplan, ames_train,

varRestriction = new_vars) %>% as.matrix()
response_train <- ames_train$Sale_Price

Jan-Philipp Kolb
Gradient Boosting



Prepare the test data

features_test <- vtreat::prepare(treatplan, ames_test,
varRestriction = new_vars) %>% as.matrix()

response_test <- ames_test$Sale_Price

dimensions of one-hot encoded data
dim(features_train)

## [1] 2051 348

dim(features_test)

## [1] 879 348

Jan-Philipp Kolb
Gradient Boosting



xgboost - training functions

I xgboost provides different training functions (i.e. xgb.train which
is just a wrapper for xgboost).

I To train an XGBoost we typically want to use xgb.cv, which
incorporates cross-validation. The following trains a basic 5-fold cross
validated XGBoost model with 1,000 trees. There are many
parameters available in xgb.cv but the ones used in this tutorial
include the following default values:

I learning rate (η): 0.3
I tree depth (max_depth): 6
I minimum node size (min_child_weight): 1
I percent of training data to sample for each tree (subsample –>

equivalent to gbm’s bag.fraction): 100%

Jan-Philipp Kolb
Gradient Boosting



Extreme gradient boosting for regression
models

set.seed(123)
xgb.fit1 <- xgb.cv(

data = features_train,
label = response_train,
nrounds = 1000, nfold = 5,
objective = "reg:linear", # for regression models
verbose = 0 # silent,

)

Jan-Philipp Kolb
Gradient Boosting



get number of trees that minimize error
I The xgb.fit1 object contains lots of good information.
I In particular we can assess the xgb.fit1$evaluation_log to

identify the minimum RMSE and the optimal number of trees for
both the training data and the cross-validated error.

I The training error continues to decrease to 924 trees where the
RMSE nearly reaches zero;

I The cross validated error reaches a minimum RMSE of 27,337 with
only 60 trees.

xgb.fit1$evaluation_log %>%
dplyr::summarise(
ntrees.train=which(train_rmse_mean==min(train_rmse_mean))[1],
rmse.train= min(train_rmse_mean),
ntrees.test=which(test_rmse_mean==min(test_rmse_mean))[1],
rmse.test = min(test_rmse_mean)

)

## ntrees.train rmse.train ntrees.test rmse.test
## 1 924 0.0483002 60 27337.79

Jan-Philipp Kolb
Gradient Boosting



Plot error vs number trees
ggplot(xgb.fit1$evaluation_log) +

geom_line(aes(iter, train_rmse_mean), color = "red") +
geom_line(aes(iter, test_rmse_mean), color = "blue")

0e+00

5e+04

1e+05

0 250 500 750 1000

iter

tr
ai

n_
rm

se
_m

ea
n

Jan-Philipp Kolb
Gradient Boosting



Early stopping

I A nice feature provided by xgb.cv is early stopping.
I This allows us to tell the function to stop running if the cross

validated error does not improve for n continuous trees.
I E.g., the above model could be re-run with the following where we

tell it stop if we see no improvement for 10 consecutive trees. This
feature will help us speed up the tuning process.

set.seed(123)
xgb.fit2 <- xgb.cv(data = features_train,

label = response_train,
nrounds = 1000, nfold = 5,
objective = "reg:linear", # for regression models
verbose = 0, # silent,
# stop if no improvement for 10 consecutive trees
early_stopping_rounds = 10)

Jan-Philipp Kolb
Gradient Boosting



plot error vs number trees
ggplot(xgb.fit2$evaluation_log) +

geom_line(aes(iter, train_rmse_mean), color = "red") +
geom_line(aes(iter, test_rmse_mean), color = "blue")

0e+00

5e+04

1e+05

0 20 40 60

iter

tr
ai

n_
rm

se
_m

ea
n

Jan-Philipp Kolb
Gradient Boosting



Tuning

I To tune the XGBoost model we pass parameters as a list object to
the params argument. The most common parameters include:

I eta:controls- the learning rate
I max_depth: tree depth
I min_child_weight: minimum number of observations required in

each terminal node
I subsample: percent of training data to sample for each tree
I colsample_bytrees: percent of columns to sample from for each

tree
I E.g. to specify specific values for these parameters we would extend

the above model with the following parameters.

Jan-Philipp Kolb
Gradient Boosting



create parameter list

params <- list(
eta = .1,
max_depth = 5,
min_child_weight = 2,
subsample = .8,
colsample_bytree = .9

)

Jan-Philipp Kolb
Gradient Boosting



To perform a large search grid,. . .
I we can follow the same procedure we did with gbm.
I We create our hyperparameter search grid along with columns to

dump our results in.
I Here, we have a pretty large search grid consisting of 576 different

hyperparameter combinations to model.

# create hyperparameter grid
hyper_grid <- expand.grid(

eta = c(.01, .05, .1, .3),
max_depth = c(1, 3, 5, 7),
min_child_weight = c(1, 3, 5, 7),
subsample = c(.65, .8, 1),
colsample_bytree = c(.8, .9, 1),
optimal_trees = 0,# a place to dump results
min_RMSE = 0# a place to dump results

)

nrow(hyper_grid)

## [1] 576Jan-Philipp Kolb
Gradient Boosting



train model

set.seed(123)
xgb.fit3 <- xgb.cv(

params = params,
data = features_train,
label = response_train,
nrounds = 1000,
nfold = 5,
objective = "reg:linear", # for regression models
verbose = 0, # silent,
# stop if no improvement for 10 consecutive trees
early_stopping_rounds = 10

)

Jan-Philipp Kolb
Gradient Boosting



assess results

xgb.fit3$evaluation_log %>%
dplyr::summarise(

ntrees.train=which(train_rmse_mean==min(train_rmse_mean))[1],
rmse.train= min(train_rmse_mean),
ntrees.test= which(test_rmse_mean==min(test_rmse_mean))[1],
rmse.test= min(test_rmse_mean)

)

## ntrees.train rmse.train ntrees.test rmse.test
## 1 211 5222.229 201 24411.64

Jan-Philipp Kolb
Gradient Boosting



Loop through a XGBoost model

I We apply the same in the loop and apply a XGBoost model for each
hyperparameter combination and dump the results in the
hyper_grid data frame.

Important note:
I If you plan to run this code be prepared to run it before going out to

eat or going to bed as it the full search grid took 6 hours to run!

Jan-Philipp Kolb
Gradient Boosting



Grid search
for(i in 1:nrow(hyper_grid)) {

params <- list(# create parameter list
eta = hyper_grid$eta[i],max_depth = hyper_grid$max_depth[i],
min_child_weight = hyper_grid$min_child_weight[i],
subsample = hyper_grid$subsample[i],
colsample_bytree = hyper_grid$colsample_bytree[i])

set.seed(123)
xgb.tune <- xgb.cv(params = params,data = features_train,
label = response_train,nrounds=5000,nfold=5,objective = "reg:linear",
#stop if no improvement for 10 consecutive trees

verbose = 0,early_stopping_rounds = 10 )
# add min training error and trees to grid
hyper_grid$optimal_trees[i]<-which.min(

xgb.tune$evaluation_log$test_rmse_mean)
hyper_grid$min_RMSE[i] <- min(

xgb.tune$evaluation_log$test_rmse_mean)
}

Jan-Philipp Kolb
Gradient Boosting



Result - top 10 models
hyper_grid %>%

dplyr::arrange(min_RMSE) %>%
head(10)

## eta max_depth min_child_weight subsample colsample_bytree
## 1 0.01 1 1 0.65 0.8
## 2 0.05 1 1 0.65 0.8
## 3 0.10 1 1 0.65 0.8
## 4 0.30 1 1 0.65 0.8
## 5 0.01 3 1 0.65 0.8
## 6 0.05 3 1 0.65 0.8
## 7 0.10 3 1 0.65 0.8
## 8 0.30 3 1 0.65 0.8
## 9 0.01 5 1 0.65 0.8
## 10 0.05 5 1 0.65 0.8
## optimal_trees min_RMSE
## 1 0 0
## 2 0 0
## 3 0 0
## 4 0 0
## 5 0 0
## 6 0 0
## 7 0 0
## 8 0 0
## 9 0 0
## 10 0 0

Jan-Philipp Kolb
Gradient Boosting



The top model

I After assessing the results you would likely perform a few more grid
searches to hone in on the parameters that appear to influence the
model the most.

I We’ll just assume the top model in the above search is the globally
optimal model. Once you’ve found the optimal model, we can fit our
final model with xgb.train.

# parameter list
params <- list(

eta = 0.01,
max_depth = 5,
min_child_weight = 5,
subsample = 0.65,
colsample_bytree = 1

)

Jan-Philipp Kolb
Gradient Boosting



Train final model

xgb.fit.final <- xgboost(
params = params,
data = features_train,
label = response_train,
nrounds = 1576,
objective = "reg:linear",
verbose = 0

)

Jan-Philipp Kolb
Gradient Boosting



Input types for xgboost

Input type: xgboost takes several types of input data:
I Dense Matrix: R’s dense matrix, i.e. matrix ;
I Sparse Matrix: R’s sparse matrix, i.e. Matrix::dgCMatrix ;
I Data File: local data files ;
I xgb.DMatrix: its own class (recommended).

get information
I We get information on an xgb.DMatrix object with getinfo

Jan-Philipp Kolb
Gradient Boosting

https://cran.r-project.org/web/packages/xgboost/vignettes/xgboostPresentation.html#manipulating-xgb.dmatrix


Visualizing

Variable importance
xgboost provides built-in variable importance plotting. First, you need to
create the importance matrix with xgb.importance and then feed this
matrix into xgb.plot.importance. There are 3 variable importance measure:

I Gain: the relative contribution of the corresponding feature to the
model calculated by taking each feature’s contribution for each tree in
the model. This is synonymous with gbm’s relative.influence.

I Cover: the relative number of observations related to this feature. For
example, if you have 100 observations, 4 features and 3 trees, and
suppose feature1 is used to decide the leaf node for 10, 5, and 2
observations in tree1, tree2 and tree3 respectively; then the metric
will count cover for this feature as 10+5+2 = 17 observations. This
will be calculated for all the 4 features and the cover will be 17
expressed as a percentage for all features’ cover metrics.

Jan-Philipp Kolb
Gradient Boosting



create importance matrix

I Frequency: the percentage representing the relative number of times
a particular feature occurs in the trees of the model. In the above
example, if feature1 occurred in 2 splits, 1 split and 3 splits in each of
tree1, tree2 and tree3; then the weightage for feature1 will be 2+1+3
= 6. The frequency for feature1 is calculated as its percentage weight
over weights of all features.

importance_matrix <- xgb.importance(model = xgb.fit.final)

variable importance plot
xgb.plot.importance(importance_matrix, top_n = 10, measure = "Gain")

Jan-Philipp Kolb
Gradient Boosting



Variable importance plot

Kitchen_Qual_lev_x_Excellent

Exter_Qual_lev_x_Good

Exter_Qual_lev_x_Typical

Total_Bsmt_SF

Gr_Liv_Area

0.00 0.10 0.200.00 0.10 0.20

Jan-Philipp Kolb
Gradient Boosting



LIME
I LIME provides built-in functionality for xgboost objects (see

?model_type).
I Just keep in mind that the local observations being analyzed need to

be one-hot encoded in the same manner as we prepared the training
and test data. Also, when you feed the training data into the
lime::lime function be sure that you coerce it from a matrix to a data
frame.

# one-hot encode the local observations to be assessed.
local_obs_onehot <- vtreat::prepare(treatplan, local_obs,

varRestriction = new_vars)

# apply LIME
explainer <- lime(data.frame(features_train), xgb.fit.final)
explanation <- explain(local_obs_onehot, explainer,

n_features = 5)

Jan-Philipp Kolb
Gradient Boosting



Plot the features
plot_features(explanation)

Case: 1
Prediction: 123908.765625
Explanation Fit: 0.18

Case: 2
Prediction: 156687.765625
Explanation Fit: 0.19

−25000025000 −25000025000

Bsmt_Full_Bath <= 1

Garage_Cars <= 1

Year_Remod_Add <= 1966

1122 < Gr_Liv_Area <= 1442

1300 < Total_Bsmt_SF

Bedroom_AbvGr <= 2

11456 < Lot_Area

Year_Remod_Add <= 1966

792 < Total_Bsmt_SF <= 994

Gr_Liv_Area <= 1122

Weight

F
ea

tu
re

Positive Negative

Jan-Philipp Kolb
Gradient Boosting



Predicting on new observations

unlike GBM we do not need to provide the number of trees. Our test set
RMSE is only about $600 different than that produced by our gbm model.

# predict values for test data
pred <- predict(xgb.fit.final, features_test)

# results
caret::RMSE(pred, response_test)

## [1] 21253.06

## [1] 21319.3

Jan-Philipp Kolb
Gradient Boosting



Links and Resources - Boosting

Links
I Gradient Boosting Machines
I How to Visualize Gradient Boosting Decision Trees With

XGBoost in Python

Resources
I Geron (2017) - Hands-On Machine Learning with Scikit-Learn

and TensorFlow: Concepts, Tools and techniques to build
intelligent systems

Jan-Philipp Kolb
Gradient Boosting

http://uc-r.github.io/gbm_regression
https://machinelearningmastery.com/visualize-gradient-boosting-decision-trees-xgboost-python/
https://machinelearningmastery.com/visualize-gradient-boosting-decision-trees-xgboost-python/
http://shop.oreilly.com/product/0636920052289.do
http://shop.oreilly.com/product/0636920052289.do
http://shop.oreilly.com/product/0636920052289.do

