Random Forests

Jan-Philipp Kolb

10 Januar, 2020

Jan-Philipp Kolb

- ▶ **[Bagging](https://en.wikipedia.org/wiki/Bootstrap_aggregating)** can turn a single tree model with high variance and poor predictive power into a fairly accurate prediction function.
- ▶ But bagging suffers from **[tree correlation](https://stats.stackexchange.com/questions/295868/why-is-tree-correlation-a-problem-when-working-with-bagging)**, which reduces the overall performance of the model.
- **[Random forests](https://en.wikipedia.org/wiki/Random_forest)** are a modification of bagging that builds a large collection of de-correlated trees
- It is a very popular **[out-of-the-box](https://en.wikipedia.org/wiki/Out_of_the_box_(feature))** learning algorithm that enjoys good predictive performance.

EXTENDING THE BAGGING TECHNIQUE

- \triangleright Bagging introduces a random component in to the tree building process
- \blacktriangleright The trees in bagging are not completely independent of each other since all the original predictors are considered at every split of every tree.
- **In Trees from different bootstrap samples have similar structure to each** other (especially at the top of the tree) due to underlying relationships.

SIMILAR TREES - TREE CORRELATION

- \blacktriangleright If we create six decision trees with different bootstrapped samples of the Boston housing data, the top of the trees all have a very similar structure.
- \triangleright Although there are 15 predictor variables to split on, all six trees have both lstat and rm variables driving the first few splits.

TREE CORRELATION

- \blacktriangleright Tree correlation prevents bagging from optimally reducing variance of the predictive values.
- \blacktriangleright To reduce variance further, we need to minimize the amount of correlation between the trees.
- \triangleright This can be achieved by injecting more randomness into the tree-growing process.

Random forests achieve this in two ways:

1) Bootstrap:

- In Similar to bagging, each tree is grown to a bootstrap resampled data set, which makes them different and decorrelates them.
- 2) Split-variable randomization:
- \blacktriangleright For every split, the search for the split variable is limited to a random subset of m of the p variables.
- For regression trees, typical default values are $m = p/3$ (tuning parameter).
- \blacktriangleright When $m = p$, the randomization is limited (only step 1) and is the same as bagging.

BASIC ALGORITHM

The basic algorithm for a regression random forest can be generalized:

The algorithm randomly selects a bootstrap sample to train and predictors to use at each split.

CHARACTERISTICS

In Since bootstrap samples and features are selected randomly at each split, we create a more diverse set of trees, which tends to lessen tree correlation beyond bagged trees and often dramatically increase predictive power.

out-of-bag error

- \triangleright Similar to bagging, a natural benefit of the bootstrap resampling process is that random forests have an **[out-of-bag](https://en.wikipedia.org/wiki/Out-of-bag_error)** (OOB) sample that provides an efficient and reasonable approximation of the test error.
- \blacktriangleright This provides a built-in validation set without any extra work, and you do not need to sacrifice any of your training data to use for validation.
- \triangleright We are more efficient identifying the number of trees required to stablize the error rate

PREPARATION - RANDOM FORESTS

 \triangleright The following slides are based on UC Business Analytics R Programming Guide on **[random forests](http://uc-r.github.io/random_forests)**

library(rsample) # data splitting library(randomForest) # basic implementation library(ranger) # a faster implementation of randomForest

caret is an aggregator package for performing many # machine learning models library(caret)

THE AMES HOUSING DATA

```
set.seed(123)
ames data <- AmesHousing::ames raw
set.seed(123)
ames_split <- rsample::initial_split(ames_data,prop=.7)
ames_train <- rsample::training(ames_split)
ames_test <- rsample::testing(ames_split)
```
Basic implementation

- \blacktriangleright There are over 20 random forest packages in R.
- \triangleright To demonstrate the basic implementation we use the random Forest package, the oldest and most well known implementation of the random forest algorithm in R.
- ▶ As your data set grows in size randomForest does not scale well (although you can parallelize with foreach).
- \triangleright To explore and compare a variety of tuning parameters we can find more effective packages.
- \blacktriangleright The package ranger will be presented in the tuning section.

randomForest::randomForest

- \triangleright randomForest can use the formula or x-y matrix notation.
- \triangleright Below we apply the default randomForest model using the formal specification.
- The default random forest performs 500 trees and $\frac{nr.$ features = 26 randomly selected predictor variables at each split.

```
set.seed(123)
   # default RF model
   (m1 \leq randomForest(formula = Sale Price ~ . , data = ames train))##
   ## Call:
   ## randomForest(formula = Sale_Price \sim ., data = ames_train)
   ## Type of random forest: regression
   ## Number of trees: 500
   ## No. of variables tried at each split: 26
   ##
   ## Mean of squared residuals: 639516350
\, Jan-Philipp Kolb\,
```
PLOTTING THE MODEL

 \blacktriangleright The error rate stabalizes with around 100 trees but continues to decrease slowly until around 300 trees.

```
plot(m1,main="Error rate")
```


Jan-Philipp Kolb

Random forests - out-of-the-box algorithm

- \triangleright Random forests perform remarkably well with very little tuning.
- \triangleright We get an RMSE of less than 30K dollar without any tuning.
- ▶ This is more than 6K dollar RMSE-reduction compared to a fully-tuned bagging model
- \triangleright and 4K dollar reduction to to a fully-tuned elastic net model.
- \triangleright We can still seek improvement by tuning our random forest model.

Tuning Random forests

- \triangleright Random forests are fairly easy to tune since there are only a handful of tuning parameters.
- \triangleright First we tune the number of candidate variables to select from at each split.
- \triangleright A few additional hyperparameters are important.

TUNING PARAMETERS (I)

 \triangleright The following hyperparameter are important (names may differ across packages):

number of trees

 \triangleright ntree - We want enough trees to stabalize the error but using too many trees is inefficient, esp. for large data sets.

number of variables

- Interv number of variables as candidates at each split. When $mtry=p$ the model equates to bagging.
- \triangleright When mtry=1 the split variable is completely random, all variables get a chance but can lead to biased results. Suggestion: start with 5 values evenly spaced across the range from 2 to p.

TUNING PARAMETERS (II)

NUMBER OF SAMPLES

- \triangleright sampsize Default value is 63.25% since this is the expected value of unique observations in the bootstrap sample.
- \blacktriangleright Lower sample sizes can reduce training time but may introduce more bias. Increasing sample size can increase performance but at risk of overfitting - it introduces more variance.

TUNING PARAMETERS (III)

minimum number of samples within the terminal nodes:

- \triangleright nodesize Controls the complexity of the trees.
- \blacktriangleright It is the minimum size of terminal nodes.
- \triangleright Smaller node size allow for deeper, more complex trees
- \blacktriangleright This is another bias-variance tradeoff where deeper trees introduce more variance (risk of overfitting)
- \triangleright Shallower trees introduce more bias (risk of not fully capturing unique patters and relatonships in the data).

maximum number of terminal nodes

- \blacktriangleright maxnodes: A way to control the complexity of the trees.
- \blacktriangleright More nodes equates to deeper, more complex trees.
- I ess nodes result in shallower trees.

INITIAL TUNING WITH RANDOMFOREST

- If we just tune the mtry parameter we can use randomForest::tuneRF for a quick and easy tuning assessment.
- \triangleright We start with 5 candidate variables ($mtryStart=5$) and increase by a factor of 2 until the OOB error stops improving by 1 per cent.
- \blacktriangleright tuneRF requires a separate x y specification.
- \blacktriangleright The optimal mtry value in this sequence is very close to the default mtry value of $\frac{\text{features}}{3} = 26$.

features <- setdiff(names(ames_train), "Sale_Price")

```
set.seed(123)
m2<-tuneRF(x= ames_train[,features],
  y= ames_train$Sale_Price,ntreeTry = 500,
  mtryStart = 5, stepFactor = 2,improve = 0.01, trace = <math>FALSE</math>)
```
Jan-Philipp Kolb

FULL GRID SEARCH WITH RANGER

- In To perform a larger grid search across several hyperparameters we'll need to create a grid, loop through each hyperparameter combination and evaluate the model.
- \triangleright Unfortunately, this is where randomForest becomes quite inefficient since it does not scale well.
- Instead, we can use ranger which is a $C++$ implementation of Breiman's random forest algorithm and is over 6 times faster than randomForest.

Assessing the speed

```
randomForest speed
system.time(
 ames_randomForest <- randomForest(
   formula = Sale_Price \sim.,
   data = ames_train,
   ntree = 500,
   mtry = floor(length(features) / 3))
)
# User System elapsed
# 145.47 0.09 152.48
```
Jan-Philipp Kolb

ranger speed

```
system.time(
 ames_ranger <- ranger(formula=Sale_Price \sim .,
   data = ames_train(num.trees = 500,mtry = floor(length(features) / 3)))
## user system elapsed
## 5.87 0.06 2.00
```
Jan-Philipp Kolb

THE GRID SEARCH

 \triangleright To perform the grid search, we construct our grid of hyperparameters.

```
# hyperparameter grid search
hyper_grid <- expand.grid(
 mtry = seq(20, 30, by = 2),node_size = seq(3, 9, by = 2),
 sampe_size = c(.55, .632, .70, .80),
 00B RMSE = 0
)
```
 \triangleright We search across 96 different models with varying m try, minimum node size, and sample size.

```
nrow(hyper_grid) # total number of combinations
## [1] 96
```
LOOP - HYPERPARAMETER COMBINATION (I)

- \triangleright We apply 500 trees since our previous example illustrated that 500 was plenty to achieve a stable error rate.
- \triangleright We set the random number generator seed. This allows us to consistently sample the same observations for each sample size and make the impact of each change clearer.

```
for(i in 1:nrow(hyper grid)) {
 model <- ranger(formula= Sale Price ~ .,data= ames train,
   num.trees = 500,mtry= hyper grid$mtry[i],
   min.node.size = hyper_grid$node_size[i],
   sample.fraction = hyper grid$sampe size[i],
   seed = 123# add OOB error to grid
 hyper grid$OOB RMSE[i] <- sqrt(model$prediction.error)
}
```
The results - samll difference between RMSE

hyper grid $\frac{1}{2}$, dplyr::arrange(OOB RMSE) $\frac{1}{2}$, head(10)

- ▶ Models with slighly larger sample sizes (70-80 per cent) and deeper trees (3-5 observations in terminal node) perform best.
- \triangleright We get various mtry values in top 10 not over influential.

Hyperparameter grid search - categorical **VARIABLES**

▶ We use **[one-hot encoding](https://hackernoon.com/what-is-one-hot-encoding-why-and-when-do-you-have-to-use-it-e3c6186d008f)** for our categorical variables which produces 353 predictor variables versus the 80 we were using above.

```
# one-hot encode our categorical variables
(one hot \leq dummyVars(\leq., ames train, fullRank = FALSE))
## Dummy Variable Object
##
\# Formula: \sim.
## 81 variables, 46 factors
## Variables and levels will be separated by '.'
## A less than full rank encoding is used
```
Make a dataframe of dummy variable object

ames_train_hot<-predict(one_hot,ames_train)%>%as.data.frame()

Jan-Philipp Kolb

Hot encoding and hypergrid

```
# make ranger compatible names
names(ames train hot) <- make.names(names(ames train hot),
                                    allow = FALSE)# --> same as above but with increased mtry values
hyper grid 2 \leq - expand.grid(
 mtry = seq(50, 200, by = 25),node size = seq(3, 9, by = 2),
  sampe size = c(.55, .632, .70, .80),
  00B RMSE = 0
)
```
THE BEST MODEL

THE BEST RANDOM FOREST MODEL:

- \blacktriangleright uses columnar categorical variables
- Intry $= 24$.
- \blacktriangleright terminal node size of 5 observations
- \blacktriangleright sample size of 80%.

How to proceed

 \blacktriangleright Repeat the model to get a better expectation of error rate.

Random forests with ranger

 \blacktriangleright The impurity measure is the variance of the responses for regression \triangleright impurity is a measure for heterogeneity - it measures how well the classes are

```
OOB RMSE \leq vector(mode = "numeric", length = 100)
for(i in seq_along(OOB_RMSE)) {
 optimal ranger \leq ranger(formula= Sale Price \sim .,
   data = ames train,
   num.trees = 500,
   mtry = 24,min.node.size = 5.
   sample.fraction = .8,
   importance = 'impurity')OOB RMSE[i] <- sqrt(optimal ranger$prediction.error)
}
```
Variable importance / node impurity

- **In [Node impurity](https://stats.stackexchange.com/questions/223109/what-do-we-mean-by-node-impurity-ref-random-forest)** represents how well the trees split the data.
- **In Gini index, Entropy and misclassification error are [options](https://www.cs.indiana.edu/~predrag/classes/2017fallb365/ch4.pdf) to measure** the node impurity
- \triangleright We set importance = 'impurity', which allows us to assess variable importance.
- **In [Variable importance](https://topepo.github.io/caret/variable-importance.html)** is measured by recording the decrease in MSE each time a variable is used as a node split in a tree.
- \triangleright The remaining error left in predictive accuracy after a node split is known as node impurity.
- \triangleright A variable that reduces this impurity is considered more imporant than those variables that do not.
- \triangleright We accumulate the reduction in MSE for each variable across all the trees and the variable with the greatest accumulated impact is considered the more important.

PLOT THE VARIABLE IMPORTANCE

varimp_ranger <- optimal_ranger\$variable.importance

lattice::barchart(sort(varimp_ranger)[1:25],col="royalblue")

▶ We see that Utilities has the greatest impact in reducing MSE across our trees, followed by names(sort(varimp_ranger))[2], Low Qual Fin SF, etc.

Jan-Philipp Kolb

A histogram of OOB RMSE

hist(OOB_RMSE, breaks = 20,col="royalblue")

Histogram of OOB_RMSE

Jan-Philipp Kolb

PREDICTING

- \triangleright With the preferred model we can use the traditional predict function to make predictions on a new data set.
- ▶ We can use this for all our model types (randomForest and ranger); although the outputs differ slightly.

randomForest

```
pred_randomForest <- predict(ames_randomForest, ames_test)
head(pred_randomForest)
```


ranger

```
pred ranger <- predict(ames ranger, ames test)
head(pred_ranger$predictions)
```
[1] 129258.1 186520.7 265628.2 197745.5 175517.6 392691.7

Summary - random forests

- ▶ Random forests provide a very powerful out-of-the-box algorithm that often has great predictive accuracy.
- \triangleright Because of their more simplistic tuning nature and the fact that they require very little, if any, feature pre-processing they are often one of the first go-to algorithms when facing a predictive modeling problem.

Advantages & Disadvantages

Advantages - random forrests

- \blacktriangleright Typically have very good performance
- \triangleright Remarkably good "out-of-the box" very little tuning required
- \triangleright Built-in validation set don't need to sacrifice data for extra validation
- \triangleright No pre-processing required
- \blacktriangleright Robust to outliers

Disadvantages - random forrests

- \triangleright Can become slow on large data sets
- \blacktriangleright Although accurate, often cannot compete with advanced boosting algorithms
- \blacktriangleright Less interpretable

These slides are mainly based on

- ▶ A UC Business Analytics R Programming Guide section **[random](http://uc-r.github.io/random_forests) [forests](http://uc-r.github.io/random_forests)**
- **In and on the [chapter on random forests](https://bradleyboehmke.github.io/HOML/random-forest.html)** in the e-book of Brad Boehmke and Brandon Greenwell - Hands-on Machine Learning with R
- ▶ **Rpubs tutorial** [random forests](https://rpubs.com/nuhorchak/randomForest)
- \blacktriangleright [Random Forests in R](https://rpubs.com/anish20/RandomForests)
- ▶ [Boston Dataset-Tree Family Part-1](https://rpubs.com/Hgoswami/368562)