
Random Forests

Jan-Philipp Kolb

10 Januar, 2020

Jan-Philipp Kolb
Random Forests

Random Forests

I Bagging can turn a single tree model with high variance and poor
predictive power into a fairly accurate prediction function.

I But bagging suffers from tree correlation, which reduces the overall
performance of the model.

I Random forests are a modification of bagging that builds a large
collection of de-correlated trees

I It is a very popular out-of-the-box learning algorithm that enjoys
good predictive performance.

Jan-Philipp Kolb
Random Forests

https://en.wikipedia.org/wiki/Bootstrap_aggregating
https://stats.stackexchange.com/questions/295868/why-is-tree-correlation-a-problem-when-working-with-bagging
https://en.wikipedia.org/wiki/Random_forest
https://en.wikipedia.org/wiki/Out_of_the_box_(feature)

Extending the bagging technique

I Bagging introduces a random component in to the tree building
process

I The trees in bagging are not completely independent of each other
since all the original predictors are considered at every split of every
tree.

I Trees from different bootstrap samples have similar structure to each
other (especially at the top of the tree) due to underlying
relationships.

Jan-Philipp Kolb
Random Forests

Similar trees - tree correlation
I If we create six decision trees with different bootstrapped samples of

the Boston housing data, the top of the trees all have a very similar
structure.

I Although there are 15 predictor variables to split on, all six trees have
both lstat and rm variables driving the first few splits.

Figure 1: Six decision trees based on different bootstrap samples.

Jan-Philipp Kolb
Random Forests

Tree correlation

I Tree correlation prevents bagging from optimally reducing variance of
the predictive values.

I To reduce variance further, we need to minimize the amount of
correlation between the trees.

I This can be achieved by injecting more randomness into the
tree-growing process.

Jan-Philipp Kolb
Random Forests

Random forests achieve this in two ways:

1) Bootstrap:
I Similar to bagging, each tree is grown to a bootstrap resampled data

set, which makes them different and decorrelates them.

2) Split-variable randomization:
I For every split, the search for the split variable is limited to a random

subset of m of the p variables.
I For regression trees, typical default values are m = p/3 (tuning

parameter).
I When m = p, the randomization is limited (only step 1) and is the

same as bagging.

Jan-Philipp Kolb
Random Forests

Basic algorithm
The basic algorithm for a regression random forest can be generalized:

1. Given training data set
2. Select number of trees to build (ntrees)
3. for i = 1 to ntrees do
4. | Generate a bootstrap sample of the original data
5. | Grow a regression tree to the bootstrapped data
6. | for each split do
7. | | Select m variables at random from all p variables
8. | | Pick the best variable/split-point among the m
9. | | Split the node into two child nodes
10. | end
11. | Use tree model stopping criteria to determine: tree complete
12. end

The algorithm randomly selects a bootstrap sample to train and predictors
to use at each split.

Jan-Philipp Kolb
Random Forests

Characteristics

I Since bootstrap samples and features are selected randomly at each
split, we create a more diverse set of trees, which tends to lessen tree
correlation beyond bagged trees and often dramatically increase
predictive power.

out-of-bag error
I Similar to bagging, a natural benefit of the bootstrap resampling

process is that random forests have an out-of-bag (OOB) sample
that provides an efficient and reasonable approximation of the test
error.

I This provides a built-in validation set without any extra work, and you
do not need to sacrifice any of your training data to use for validation.

I We are more efficient identifying the number of trees required to
stablize the error rate

Jan-Philipp Kolb
Random Forests

https://en.wikipedia.org/wiki/Out-of-bag_error

Preparation - random forests

I The following slides are based on UC Business Analytics R
Programming Guide on random forests

library(rsample) # data splitting
library(randomForest) # basic implementation
library(ranger) # a faster implementation of randomForest

caret is an aggregator package for performing many
machine learning models
library(caret)

Jan-Philipp Kolb
Random Forests

http://uc-r.github.io/random_forests

The Ames housing data

set.seed(123)
ames_data <- AmesHousing::ames_raw

set.seed(123)
ames_split <- rsample::initial_split(ames_data,prop=.7)
ames_train <- rsample::training(ames_split)
ames_test <- rsample::testing(ames_split)

Jan-Philipp Kolb
Random Forests

Basic implementation

I There are over 20 random forest packages in R.
I To demonstrate the basic implementation we use the randomForest

package, the oldest and most well known implementation of the
random forest algorithm in R.

I As your data set grows in size randomForest does not scale well
(although you can parallelize with foreach).

I To explore and compare a variety of tuning parameters we can find
more effective packages.

I The package ranger will be presented in the tuning section.

Jan-Philipp Kolb
Random Forests

randomForest::randomForest
I randomForest can use the formula or x-y matrix notation.
I Below we apply the default randomForest model using the formal

specification.
I The default random forest performs 500 trees and nr. features

3 = 26
randomly selected predictor variables at each split.

set.seed(123)
default RF model
(m1 <- randomForest(formula = Sale_Price ~ .,data=ames_train))

##
Call:
randomForest(formula = Sale_Price ~ ., data = ames_train)
Type of random forest: regression
Number of trees: 500
No. of variables tried at each split: 26
##
Mean of squared residuals: 639516350
% Var explained: 89.7Jan-Philipp Kolb

Random Forests

Plotting the model
I The error rate stabalizes with around 100 trees but continues to

decrease slowly until around 300 trees.

plot(m1,main="Error rate")

Jan-Philipp Kolb
Random Forests

Random forests - out-of-the-box algorithm

I Random forests perform remarkably well with very little tuning.
I We get an RMSE of less than 30K dollar without any tuning.
I This is more than 6K dollar RMSE-reduction compared to a

fully-tuned bagging model
I and 4K dollar reduction to to a fully-tuned elastic net model.
I We can still seek improvement by tuning our random forest model.

Tuning Random forests
I Random forests are fairly easy to tune since there are only a handful

of tuning parameters.
I First we tune the number of candidate variables to select from at

each split.
I A few additional hyperparameters are important.

Jan-Philipp Kolb
Random Forests

Tuning parameters (I)

I The following hyperparameter are important (names may differ across
packages):

number of trees
I ntree - We want enough trees to stabalize the error but using too

many trees is inefficient, esp. for large data sets.

number of variables
I mtry - number of variables as candidates at each split. When mtry=p

the model equates to bagging.
I When mtry=1 the split variable is completely random, all variables

get a chance but can lead to biased results. Suggestion: start with 5
values evenly spaced across the range from 2 to p.

Jan-Philipp Kolb
Random Forests

Tuning parameters (II)

Number of samples
I sampsize - Default value is 63.25% since this is the expected value

of unique observations in the bootstrap sample.
I Lower sample sizes can reduce training time but may introduce more

bias. Increasing sample size can increase performance but at risk of
overfitting - it introduces more variance.

Jan-Philipp Kolb
Random Forests

Tuning parameters (III)

minimum number of samples within the terminal
nodes:
I nodesize - Controls the complexity of the trees.
I It is the minimum size of terminal nodes.
I Smaller node size allow for deeper, more complex trees
I This is another bias-variance tradeoff where deeper trees introduce

more variance (risk of overfitting)
I Shallower trees introduce more bias (risk of not fully capturing unique

patters and relatonships in the data).

maximum number of terminal nodes
I maxnodes: A way to control the complexity of the trees.
I More nodes equates to deeper, more complex trees.
I Less nodes result in shallower trees.

Jan-Philipp Kolb
Random Forests

Initial tuning with randomForest

I If we just tune the mtry parameter we can use
randomForest::tuneRF for a quick and easy tuning assessment.

I We start with 5 candidate variables (mtryStart=5) and increase by a
factor of 2 until the OOB error stops improving by 1 per cent.

I tuneRF requires a separate x y specification.
I The optimal mtry value in this sequence is very close to the default

mtry value of features
3 = 26.

features <- setdiff(names(ames_train), "Sale_Price")

set.seed(123)
m2<-tuneRF(x= ames_train[,features],

y= ames_train$Sale_Price,ntreeTry = 500,
mtryStart = 5,stepFactor = 2,
improve = 0.01,trace=FALSE)

Jan-Philipp Kolb
Random Forests

Full grid search with ranger

I To perform a larger grid search across several hyperparameters we’ll
need to create a grid, loop through each hyperparameter combination
and evaluate the model.

I Unfortunately, this is where randomForest becomes quite inefficient
since it does not scale well.

I Instead, we can use ranger which is a C++ implementation of
Breiman’s random forest algorithm and is over 6 times faster than
randomForest.

Jan-Philipp Kolb
Random Forests

Assessing the speed

randomForest speed
system.time(

ames_randomForest <- randomForest(
formula = Sale_Price ~ .,
data = ames_train,
ntree = 500,
mtry = floor(length(features) / 3)

)
)
User System elapsed
145.47 0.09 152.48

Jan-Philipp Kolb
Random Forests

ranger speed

system.time(
ames_ranger <- ranger(formula=Sale_Price ~ .,

data = ames_train,num.trees = 500,
mtry = floor(length(features) / 3))

)

user system elapsed
5.87 0.06 2.00

Jan-Philipp Kolb
Random Forests

The grid search

I To perform the grid search, we construct our grid of hyperparameters.

hyperparameter grid search
hyper_grid <- expand.grid(

mtry = seq(20, 30, by = 2),
node_size = seq(3, 9, by = 2),
sampe_size = c(.55, .632, .70, .80),
OOB_RMSE = 0

)

I We search across 96 different models with varying mtry, minimum
node size, and sample size.

nrow(hyper_grid) # total number of combinations

[1] 96

Jan-Philipp Kolb
Random Forests

Loop - hyperparameter combination (I)

I We apply 500 trees since our previous example illustrated that 500
was plenty to achieve a stable error rate.

I We set the random number generator seed. This allows us to
consistently sample the same observations for each sample size and
make the impact of each change clearer.

for(i in 1:nrow(hyper_grid)) {
model <- ranger(formula= Sale_Price ~ .,data= ames_train,

num.trees = 500,mtry= hyper_grid$mtry[i],
min.node.size = hyper_grid$node_size[i],
sample.fraction = hyper_grid$sampe_size[i],
seed = 123)
add OOB error to grid

hyper_grid$OOB_RMSE[i] <- sqrt(model$prediction.error)
}

Jan-Philipp Kolb
Random Forests

The results - samll difference between RMSE
hyper_grid %>% dplyr::arrange(OOB_RMSE) %>% head(10)

mtry node_size sampe_size OOB_RMSE
1 26 3 0.8 25404.60
2 28 3 0.8 25405.92
3 28 5 0.8 25459.46
4 26 5 0.8 25493.80
5 30 3 0.8 25528.26
6 22 3 0.7 25552.73
7 26 9 0.8 25554.31
8 28 7 0.8 25578.45
9 20 3 0.8 25581.23
10 24 3 0.8 25590.73

I Models with slighly larger sample sizes (70-80 per cent) and deeper
trees (3-5 observations in terminal node) perform best.

I We get various mtry values in top 10 - not over influential.

Jan-Philipp Kolb
Random Forests

Hyperparameter grid search - categorical
variables

I We use one-hot encoding for our categorical variables which
produces 353 predictor variables versus the 80 we were using above.

one-hot encode our categorical variables
(one_hot <- dummyVars(~ ., ames_train, fullRank = FALSE))

Dummy Variable Object
##
Formula: ~.
81 variables, 46 factors
Variables and levels will be separated by '.'
A less than full rank encoding is used

Jan-Philipp Kolb
Random Forests

https://hackernoon.com/what-is-one-hot-encoding-why-and-when-do-you-have-to-use-it-e3c6186d008f

Make a dataframe of dummy variable object

ames_train_hot<-predict(one_hot,ames_train)%>%as.data.frame()

Jan-Philipp Kolb
Random Forests

Hot encoding and hypergrid

make ranger compatible names
names(ames_train_hot) <- make.names(names(ames_train_hot),

allow_ = FALSE)
--> same as above but with increased mtry values
hyper_grid_2 <- expand.grid(

mtry = seq(50, 200, by = 25),
node_size = seq(3, 9, by = 2),
sampe_size = c(.55, .632, .70, .80),
OOB_RMSE = 0

)

Jan-Philipp Kolb
Random Forests

The best model

The best random forest model:
I uses columnar categorical variables
I mtry = 24,
I terminal node size of 5 observations
I sample size of 80%.

How to proceed
I Repeat the model to get a better expectation of error rate.

Jan-Philipp Kolb
Random Forests

Random forests with ranger

I The impurity measure is the variance of the responses for regression
I impurity is a measure for heterogeneity - it measures how well the

classes are

OOB_RMSE <- vector(mode = "numeric", length = 100)
for(i in seq_along(OOB_RMSE)) {

optimal_ranger <- ranger(formula= Sale_Price ~ .,
data = ames_train,
num.trees = 500,
mtry = 24,
min.node.size = 5,
sample.fraction = .8,
importance = 'impurity')

OOB_RMSE[i] <- sqrt(optimal_ranger$prediction.error)
}

Jan-Philipp Kolb
Random Forests

Variable importance / node impurity
I Node impurity represents how well the trees split the data.
I Gini index, Entropy and misclassification error are options to measure

the node impurity
I We set importance = 'impurity', which allows us to assess

variable importance.
I Variable importance is measured by recording the decrease in MSE

each time a variable is used as a node split in a tree.
I The remaining error left in predictive accuracy after a node split is

known as node impurity.
I A variable that reduces this impurity is considered more imporant

than those variables that do not.
I We accumulate the reduction in MSE for each variable across all the

trees and the variable with the greatest accumulated impact is
considered the more important.

Jan-Philipp Kolb
Random Forests

https://stats.stackexchange.com/questions/223109/what-do-we-mean-by-node-impurity-ref-random-forest
https://www.cs.indiana.edu/~predrag/classes/2017fallb365/ch4.pdf
https://topepo.github.io/caret/variable-importance.html

Plot the variable importance
varimp_ranger <- optimal_ranger$variable.importance

lattice::barchart(sort(varimp_ranger)[1:25],col="royalblue")

I We see that Utilities has the greatest impact in reducing MSE across
our trees, followed by names(sort(varimp_ranger))[2],
Low_Qual_Fin_SF, etc.

Jan-Philipp Kolb
Random Forests

A histogram of OOB RMSE
hist(OOB_RMSE, breaks = 20,col="royalblue")

Jan-Philipp Kolb
Random Forests

Predicting
I With the preferred model we can use the traditional predict function

to make predictions on a new data set.
I We can use this for all our model types (randomForest and

ranger); although the outputs differ slightly.

randomForest
pred_randomForest <- predict(ames_randomForest, ames_test)
head(pred_randomForest)

1 2 3 4 5 6
113543.1 185556.4 259258.1 190943.9 179071.0 480952.3

ranger
pred_ranger <- predict(ames_ranger, ames_test)
head(pred_ranger$predictions)

[1] 129258.1 186520.7 265628.2 197745.5 175517.6 392691.7

Jan-Philipp Kolb
Random Forests

Summary - random forests

I Random forests provide a very powerful out-of-the-box algorithm that
often has great predictive accuracy.

I Because of their more simplistic tuning nature and the fact that they
require very little, if any, feature pre-processing they are often one of
the first go-to algorithms when facing a predictive modeling problem.

Jan-Philipp Kolb
Random Forests

Advantages & Disadvantages

Advantages - random forrests
I Typically have very good performance
I Remarkably good “out-of-the box” - very little tuning required
I Built-in validation set - don’t need to sacrifice data for extra validation
I No pre-processing required
I Robust to outliers

Disadvantages - random forrests
I Can become slow on large data sets
I Although accurate, often cannot compete with advanced boosting

algorithms
I Less interpretable

Jan-Philipp Kolb
Random Forests

Links

These slides are mainly based on
I A UC Business Analytics R Programming Guide - section random

forests
I and on the chapter on random forests in the e-book of Brad

Boehmke and Brandon Greenwell - Hands-on Machine Learning with
R

I Rpubs tutorial - random forests
I Random Forests in R
I Boston Dataset-Tree Family Part-1

Jan-Philipp Kolb
Random Forests

http://uc-r.github.io/random_forests
http://uc-r.github.io/random_forests
https://bradleyboehmke.github.io/HOML/random-forest.html
https://rpubs.com/nuhorchak/randomForest
https://rpubs.com/anish20/RandomForests
https://rpubs.com/Hgoswami/368562

