RANDOM FORESTS

Jan-Philipp Kolb

10 Januar, 2020

Lipp KoLB

RANDOM FORESTS

» Bagging can turn a single tree model with high variance and poor
predictive power into a fairly accurate prediction function.

» But bagging suffers from tree correlation, which reduces the overall
performance of the model.

» Random forests are a modification of bagging that builds a large
collection of de-correlated trees

» |t is a very popular out-of-the-box learning algorithm that enjoys
good predictive performance.

JAN-PHILIPP

https://en.wikipedia.org/wiki/Bootstrap_aggregating
https://stats.stackexchange.com/questions/295868/why-is-tree-correlation-a-problem-when-working-with-bagging
https://en.wikipedia.org/wiki/Random_forest
https://en.wikipedia.org/wiki/Out_of_the_box_(feature)

EXTENDING THE BAGGING TECHNIQUE

» Bagging introduces a random component in to the tree building
process

» The trees in bagging are not completely independent of each other
since all the original predictors are considered at every split of every
tree.

P> Trees from different bootstrap samples have similar structure to each
other (especially at the top of the tree) due to underlying
relationships.

JAN-PHILIPP KOLB

SIMILAR TREES - TREE CORRELATION
P |If we create six decision trees with different bootstrapped samples of
the Boston housing data, the top of the trees all have a very similar

structure.
» Although there are 15 predictor variables to split on, all six trees have

both 1stat and rm variables driving the first few splits.

Decision Tree 1 Decision Tree 2 Decision Tree 3
et 2207 [—) (e lstat >= 8.1 [55] @™ E—
Ium- :o m-an Istaia—15 mq‘,!g '_umn|5_| m<7.a
<l S nm::-l'ls rm-=0? Inn-- .mns
Ietm LZ‘J stal = 4. 6 Iatat == 20 ||nn-se & m =43
chbee
Decision Tree 4 Decision Tree 5 Decision Tree 6
m-s,r@_| —{mE] MM <6 [m— = ™ <7 [@h
fetat = 10 me7s - lstat>e i rm<74 Istat 3= 15 m<Td
i

ctim>s 6.3 lstat>w 9.5

age <83

nox »= 0.65 rm<6.5 piratio >= 17
'

crim >= 9.8

ime=T dstata=if Istat 3= 5.5

JAN-PHILIPP KOLB
RANDOM F¢

TREE CORRELATION

» Tree correlation prevents bagging from optimally reducing variance of

the predictive values.
» To reduce variance further, we need to minimize the amount of

correlation between the trees.
» This can be achieved by injecting more randomness into the
tree-growing process.

RANDOM FORESTS ACHIEVE THIS IN TWO WAYS:

1)

>

Bootstrap:

Similar to bagging, each tree is grown to a bootstrap resampled data
set, which makes them different and decorrelates them.

Split-variable randomization:

For every split, the search for the split variable is limited to a random
subset of m of the p variables.

For regression trees, typical default values are m = p/3 (tuning
parameter).

When m = p, the randomization is limited (only step 1) and is the
same as bagging.

BASIC ALGORITHM

The basic algorithm for a regression random forest can be generalized:

Given training data set

Select number of trees to build (ntrees)

for i = 1 to ntrees do

| Generate a bootstrap sample of the original data

| Grow a regression tree to the bootstrapped data

| for each split do

| | Select m variables at random from all p variables
| | Pick the best variable/split-point among the m
|

|

|

© 00 N O W N -

| Split the node into two child nodes
end

—
o

11. Use tree model stopping criteria to determine: tree comple
12. end

The algorithm randomly selects a bootstrap sample to train and predictors
to use at each split.

CHARACTERISTICS

» Since bootstrap samples and features are selected randomly at each
split, we create a more diverse set of trees, which tends to lessen tree
correlation beyond bagged trees and often dramatically increase
predictive power.

OUT-OF-BAG ERROR
» Similar to bagging, a natural benefit of the bootstrap resampling
process is that random forests have an out-of-bag (OOB) sample
that provides an efficient and reasonable approximation of the test

error.

» This provides a built-in validation set without any extra work, and you
do not need to sacrifice any of your training data to use for validation.

» We are more efficient identifying the number of trees required to
stablize the error rate

https://en.wikipedia.org/wiki/Out-of-bag_error

PREPARATION - RANDOM FORESTS

» The following slides are based on UC Business Analytics R
Programming Guide on random forests

library(rsample) # data splitting
library(randomForest) # basic implementation
library(ranger) # a faster implementation of randomForest

caret is an aggregator package for performing many
machine learning models
library(caret)

JAN-PHILIPP

http://uc-r.github.io/random_forests

THE AMES HOUSING DATA

set.seed(123)
ames_data <- AmesHousing::ames_raw

set.seed(123)

ames_split <- rsample::initial_split(ames_data,prop=.7)
ames_train <- rsample::training(ames_split)

ames_test <- rsample::testing(ames_split)

JAN-PHILIPP

BASIC IMPLEMENTATION

» There are over 20 random forest packages in R.

» To demonstrate the basic implementation we use the randomForest
package, the oldest and most well known implementation of the
random forest algorithm in R.

P> As your data set grows in size randomForest does not scale well
(although you can parallelize with foreach).

» To explore and compare a variety of tuning parameters we can find
more effective packages.

» The package ranger will be presented in the tuning section.

JAN-PHILIPP

RANDOMFOREST: : RANDOMFOREST
» randomForest can use the formula or x-y matrix notation.
» Below we apply the default randomForest model using the formal

specification.
nr. features

» The default random forest performs 500 trees and =26

randomly selected predictor variables at each split.

set.seed(123)

default RF model

(m1 <- randomForest(formula = Sale_Price ~ .,data=ames_train))

##

Call:

randomForest(formula = Sale_ Price ~ ., data = ames_train)

Type of random forest: regression

Number of trees: 500

No. of variables tried at each split: 26

##

#it Mean of squared residuals: 639516350

JAN-PHILIPP KOLB

PLOTTING THE MODEL

» The error rate stabalizes with around 100 trees but continues to
decrease slowly until around 300 trees.

plot(ml,main="Error rate")

Error rate

1.4e+09 1.6e+09

Error

8.0e+08 1.0e+09 1.2e+09

6.0e+08

0 100 200 300 400 500

trees

RANDOM FORESTS - OUT-OF-THE-BOX ALGORITHM

» Random forests perform remarkably well with very little tuning.

» We get an RMSE of less than 30K dollar without any tuning.

» This is more than 6K dollar RMSE-reduction compared to a
fully-tuned bagging model

» and 4K dollar reduction to to a fully-tuned elastic net model.

» We can still seek improvement by tuning our random forest model.

TUNING RANDOM FORESTS
» Random forests are fairly easy to tune since there are only a handful
of tuning parameters.
» First we tune the number of candidate variables to select from at

each split.
> A few additional hyperparameters are important.

JAN-PHILIPP KOLB

TUNING PARAMETERS (I)

» The following hyperparameter are important (names may differ across
packages):

NUMBER OF TREES

» ntree - We want enough trees to stabalize the error but using too
many trees is inefficient, esp. for large data sets.

NUMBER OF VARIABLES
» mtry - number of variables as candidates at each split. When mtry=p
the model equates to bagging.
» When mtry=1 the split variable is completely random, all variables
get a chance but can lead to biased results. Suggestion: start with 5
values evenly spaced across the range from 2 to p.

JAN-PHILIPP KOLB

TUNING PARAMETERS (1)

NUMBER OF SAMPLES
» sampsize - Default value is 63.25% since this is the expected value
of unique observations in the bootstrap sample.
» Lower sample sizes can reduce training time but may introduce more
bias. Increasing sample size can increase performance but at risk of
overfitting - it introduces more variance.

JAN-PHILIPP

TUNING PARAMETERS (I1II)

MINIMUM NUMBER OF SAMPLES WITHIN THE TERMINAL
NODES:

nodesize - Controls the complexity of the trees.

It is the minimum size of terminal nodes.

Smaller node size allow for deeper, more complex trees

This is another bias-variance tradeoff where deeper trees introduce
more variance (risk of overfitting)

Shallower trees introduce more bias (risk of not fully capturing unique
patters and relatonships in the data).

vVvVyyvyyYy

\

MAXIMUM NUMBER OF TERMINAL NODES
» maxnodes: A way to control the complexity of the trees.
» More nodes equates to deeper, more complex trees.
P Less nodes result in shallower trees.

JAN-PHILIPP KOLB

INITIAL TUNING WITH RANDOMFOREST

» If we just tune the mtry parameter we can use
randomForest: :tuneRF for a quick and easy tuning assessment.

» We start with 5 candidate variables (mtryStart=5) and increase by a
factor of 2 until the OOB error stops improving by 1 per cent.

» tuneRF requires a separate x y specification.

» The optimal mtry value in this sequence is very close to the default

features
mtry value of Tu = 26.

features <- setdiff (names(ames_train), "Sale_ Price")

set.seed(123)

m2<-tuneRF (x= ames_train[,features],
y= ames_train$Sale_Price,ntreeTry = 500,
mtryStart = 5,stepFactor = 2,
improve = 0.01,trace=FALSE)

JAN-PHILIPP KOLB

FULL GRID SEARCH WITH RANGER

» To perform a larger grid search across several hyperparameters we'll
need to create a grid, loop through each hyperparameter combination
and evaluate the model.

» Unfortunately, this is where randomForest becomes quite inefficient
since it does not scale well.

» Instead, we can use ranger which is a C++ implementation of
Breiman's random forest algorithm and is over 6 times faster than
randomForest.

JAN-PHILIPP

ASSESSING THE SPEED

RANDOMFOREST SPEED
system. time(
ames_randomForest <- randomForest (
formula = Sale_Price ~ .,

data = ames_train,
ntree = 500,
mtry = floor(length(features) / 3)
)
)
User System elapsed

145.47 0.09 152.48

JAN-PHILIPP

RANGER SPEED

system.time (
ames_ranger <- ranger (formula=Sale_Price ~ .,
data = ames_train,num.trees = 500,
mtry floor(length(features) / 3))

)

user system elapsed
5.87 0.06 2.00

JAN-PHILIPP

THE GRID SEARCH

» To perform the grid search, we construct our grid of hyperparameters.

hyperparameter grid search
hyper_grid <- expand.grid(

mtry
node_size

sampe_size =

00B_RMSE

» We search

= seq(20, 30, by = 2),

= seq(3, 9, by = 2),
c(.55, .632, .70, .80),
0

across 96 different models with varying mtry, minimum

node size, and sample size.

nrow(hyper_grid) # total number of combinations

[1] 96

JAN-PHILIPP KOLB

LOOP - HYPERPARAMETER COMBINATION (I)

» We apply 500 trees since our previous example illustrated that 500
was plenty to achieve a stable error rate.

» We set the random number generator seed. This allows us to
consistently sample the same observations for each sample size and
make the impact of each change clearer.

for(i in 1:nrow(hyper_grid)) {

model <- ranger(formula= Sale_Price ~ .,data= ames_train,
num.trees = 500,mtry= hyper_grid$mtryl[i],
min.node.size = hyper_grid$node_sizel[i],
sample.fraction = hyper_grid$sampe_sizel[i],
seed = 123)

add 00B error to grid
hyper_grid$00B_RMSE[i] <- sqrt(model$prediction.error)

JAN-PHILIPP KOLB

THE RESULTS - SAMLL DIFFERENCE BETWEEN RMSE

hyper_grid %>% dplyr::arrange(00B_RMSE) %>% head(10)

mtry node_size sampe_size 00B_RMSE

1 26 3 0.8 25404.60
2 28 3 0.8 25405.92
3 28 5 0.8 25459.46
4 26 5 0.8 25493.80
5 30 3 0.8 25528.26
6 22 3 0.7 25552.73
7 26 9 0.8 25554.31
8 28 7 0.8 25578.45
9 20 3 0.8 25581.23
10 24 3 0.8 25590.73

» Models with slighly larger sample sizes (70-80 per cent) and deeper
trees (3-5 observations in terminal node) perform best.
» We get various mtry values in top 10 - not over influential.

JAN-PHILIPP KOLB

HYPERPARAMETER GRID SEARCH - CATEGORICAL
VARIABLES

» We use one-hot encoding for our categorical variables which
produces 353 predictor variables versus the 80 we were using above.

one-hot encode our categorical variables

(one_hot <- dummyVars(~ ., ames_train, fullRank = FALSE))
Dummy Variable Object

H##

Formula: ~.

81 variables, 46 factors
Variables and levels will be separated by '.
A less than full rank encoding is used

JAN-PHILIPP KOLB

https://hackernoon.com/what-is-one-hot-encoding-why-and-when-do-you-have-to-use-it-e3c6186d008f

MAKE A DATAFRAME OF DUMMY VARIABLE OBJECT

ames_train_hot<-predict (one_hot,ames_train)’>%as.data.frame()

HoOT ENCODING AND HYPERGRID

make ranger compatible names
names (ames_train_hot) <- make.names(names(ames_train_hot),
allow_ = FALSE)
--> same as above but with increased mtry values
hyper_grid_2 <- expand.grid(
mtry seq(50, 200, by = 25),
node_size = seq(3, 9, by = 2),
sampe_size = c(.55, .632, .70, .80),
00OB_RMSE = 0

JAN-PHILIPP

THE BEST MODEL

THE BEST RANDOM FOREST MODEL:
» uses columnar categorical variables
> mtry = 24,
» terminal node size of 5 observations
» sample size of 80%.

How TO PROCEED
P> Repeat the model to get a better expectation of error rate.

JAN-PHILIPP

RANDOM FORESTS WITH RANGER

» The impurity measure is the variance of the responses for regression
» impurity is a measure for heterogeneity - it measures how well the
classes are

00B_RMSE <- vector(mode = "numeric", length = 100)
for(i in seq_along(00B_RMSE)) {
optimal_ranger <- ranger(formula= Sale_Price ~ .,

data = ames_train,
num.trees = 500,

mtry = 24,
min.node.size =5,
sample.fraction = .8,
importance = 'impurity')

00B_RMSE[i] <- sqrt(optimal_ranger$prediction.error)

JAN-PHILIPP KOLB

VARIABLE IMPORTANCE / NODE IMPURITY

>

>

Node impurity represents how well the trees split the data.

Gini index, Entropy and misclassification error are options to measure
the node impurity

We set importance = 'impurity', which allows us to assess
variable importance.

Variable importance is measured by recording the decrease in MSE
each time a variable is used as a node split in a tree.

The remaining error left in predictive accuracy after a node split is
known as node impurity.

A variable that reduces this impurity is considered more imporant
than those variables that do not.

We accumulate the reduction in MSE for each variable across all the
trees and the variable with the greatest accumulated impact is
considered the more important.

https://stats.stackexchange.com/questions/223109/what-do-we-mean-by-node-impurity-ref-random-forest
https://www.cs.indiana.edu/~predrag/classes/2017fallb365/ch4.pdf
https://topepo.github.io/caret/variable-importance.html

PLOT THE VARIABLE IMPORTANCE

varimp_ranger <- optimal_ranger$variable.importance
lattice: :barchart (sort(varimp_ranger) [1:25],col="royalblue")

> We see that Utilities has the greatest impact in reducing MSE across
our trees, followed by names (sort(varimp_ranger)) [2],
Low_Qual_Fin_SF, etc.

g
ils
ar

Bldg_Type
Sale_Type

Exter_Cond
Bamt_Cond
Bsmi_Half_Bath
BsmiFin_SF_2

A HISTOGRAM OF OOB RMSE

hist (00OB_RMSE, breaks = 20,col="royalblue")

Frequency

Histogram of 0OOB_RMSE

T T T T T T 1
25800 25900 28000 26100 26200 26300 26400

QOB_RMSE

PREDICTING

» With the preferred model we can use the traditional predict function
to make predictions on a new data set.

» \We can use this for all our model types (randomForest and
ranger); although the outputs differ slightly.

randomForest
pred_randomForest <- predict(ames_randomForest, ames_test)
head (pred_randomForest)

1 2 3 4 5 6
113543.1 185556.4 259258.1 190943.9 179071.0 480952.3

ranger
pred_ranger <- predict(ames_ranger, ames_test)
head (pred_ranger$predictions)

[1] 129258.1 186520.7 265628.2 197745.5 175517.6 392691.7

JAN-PHILIPP KOLB

SUMMARY - RANDOM FORESTS

» Random forests provide a very powerful out-of-the-box algorithm that
often has great predictive accuracy.

» Because of their more simplistic tuning nature and the fact that they
require very little, if any, feature pre-processing they are often one of
the first go-to algorithms when facing a predictive modeling problem.

JAN-PHILIPP KOLB

ADVANTAGES & DISADVANTAGES

ADVANTAGES - RANDOM FORRESTS
» Typically have very good performance
» Remarkably good “out-of-the box” - very little tuning required
» Built-in validation set - don't need to sacrifice data for extra validation
» No pre-processing required
» Robust to outliers

DISADVANTAGES - RANDOM FORRESTS
» Can become slow on large data sets
» Although accurate, often cannot compete with advanced boosting
algorithms
P Less interpretable

JAN-PHILIPP KOLB

LINKS

These slides are mainly based on

» A UC Business Analytics R Programming Guide - section random
forests

» and on the chapter on random forests in the e-book of Brad

Boehmke and Brandon Greenwell - Hands-on Machine Learning with
R

» Rpubs tutorial - random forests
» Random Forests in R

» Boston Dataset-Tree Family Part-1

JAN-PHILIPP

http://uc-r.github.io/random_forests
http://uc-r.github.io/random_forests
https://bradleyboehmke.github.io/HOML/random-forest.html
https://rpubs.com/nuhorchak/randomForest
https://rpubs.com/anish20/RandomForests
https://rpubs.com/Hgoswami/368562

