
Supervised Learning - Regression
Trees and Bagging

Jan-Philipp Kolb

04 Juni, 2019

Jan-Philipp Kolb
Supervised Learning - Regression Trees and Bagging

Tree-Based Models

I Trees are good for interpretation because they are simple
I Tree based methods involve stratifying or segmenting the predictor

space into a number of simple regions. (Hastie and Tibshirani)

But:
I These methods do not deliver the best results concerning prediction

accuracy.

Source of slides
I The following slides are based on the UC Business Analytics R

Programming Guide on regression trees

Jan-Philipp Kolb
Supervised Learning - Regression Trees and Bagging

https://www.statmethods.net/advstats/cart.html
https://lagunita.stanford.edu/c4x/HumanitiesScience/StatLearning/asset/trees.pdf
http://uc-r.github.io/regression_trees

The Idea

I There are many methodologies for constructing regression trees but
one of the oldest is the classification and regression tree (CART)
approach by Breiman et al. (1984).

I Basic regression trees partition a data set into smaller
subgroups and then fit a simple constant for each observation in the
subgroup.

I The partitioning is achieved by successive binary partitions (aka
recursive partitioning) based on the different predictors.

I The constant to predict is based on the average response values for
all observations that fall in that subgroup.

Jan-Philipp Kolb
Supervised Learning - Regression Trees and Bagging

https://machinelearningmastery.com/classification-and-regression-trees-for-machine-learning/
https://towardsdatascience.com/the-complete-guide-to-decision-trees-28a4e3c7be14
https://towardsdatascience.com/the-complete-guide-to-decision-trees-28a4e3c7be14
https://en.wikipedia.org/wiki/Binary_space_partitioning
https://en.wikipedia.org/wiki/Recursive_partitioning

Explanation: decision tree

Decision trees model data as a “tree” of hierarchical branches. They make
branches until they reach “leaves” that represent predictions.

Jan-Philipp Kolb
Supervised Learning - Regression Trees and Bagging

https://en.wikipedia.org/wiki/Decision_tree

Example decission trees

Due to their branching structure, decision trees can easily model nonlinear
relationships.

Example
I For single family homes (larger lots) higher prices,
I and for apartments (smaller lots), also higher prices (because here it’s

a proxy for urban / rural).

This reversal of correlation is difficult for linear models to capture unless
you explicitly add an interaction term

I Decision trees can capture this relationship naturally.

Jan-Philipp Kolb
Supervised Learning - Regression Trees and Bagging

Model foundations

I This simple example can be generalized
I We have a continuous response variable Y and two inputs X1 and X2.
I The recursive partitioning results in three regions (R1,R2,R3) where

the model predicts Y with a constant cm for region Rm:

f̂ (X) =
3∑

m=1
cmI(X1,X2) ∈ Rm

Jan-Philipp Kolb
Supervised Learning - Regression Trees and Bagging

How to grow a regression tree - deciding on
splits

I It is important to realize the partitioning of variables are done in a
top-down approach.

I A partition performed earlier in the tree will not change based on later
partitions.

How are these partions made?
I The model begins with the entire data set, S, and searches every

distinct value of every input variable to find the predictor and split
value that partitions the data into two regions (R1 and R2) such that
the overall sums of squares error are minimized:

minimize{SSE =
∑
i∈R1

(yi − c1)2 +
∑
i∈R2

(yi − c2)2}

Jan-Philipp Kolb
Supervised Learning - Regression Trees and Bagging

The best split

I Having found the best split, we partition the data into the two
resulting regions and repeat the splitting process on each of the two
regions.

I This process is continued until some stopping criterion is reached.
I We typically get a very deep, complex tree that may produce good

predictions on the training set, but is likely to overfit the data,
leading to poor performance on unseen data.

Jan-Philipp Kolb
Supervised Learning - Regression Trees and Bagging

https://www.researchgate.net/post/What_is_over_fitting_in_decision_tree

Pruning

I We create three decision trees based on three different samples of the
data.

I The first few partitions are fairly similar at the top of each tree; - they
tend to differ closer to the terminal nodes.

I These deeper nodes tend to overfit to specific attributes of the
sample data;

I Slightly different samples will result in highly variable estimate/
predicted values in the terminal nodes.

I By pruning these lower level decision nodes, we can introduce a little
bit of bias in our model that help to stabilize predictions and will tend
to generalize better to new, unseen data.

Jan-Philipp Kolb
Supervised Learning - Regression Trees and Bagging

https://dzone.com/articles/decision-trees-and-pruning-in-r

Three decision trees based on three samples.

Jan-Philipp Kolb
Supervised Learning - Regression Trees and Bagging

Regression Trees - preparation

library(rsample) # data splitting
library(dplyr) # data wrangling
library(rpart) # performing regression trees
library(rpart.plot) # plotting regression trees
library(ipred) # bagging
library(caret) # bagging

Jan-Philipp Kolb
Supervised Learning - Regression Trees and Bagging

The Ames Housing data

I Again we use the Ames dataset and split it in a test and training
dataset

set.seed(123)
ames_data <- AmesHousing::make_ames()
ames_split <- initial_split(ames_data,prop = .7)
ames_train <- training(ames_split)
ames_test <- testing(ames_split)

Jan-Philipp Kolb
Supervised Learning - Regression Trees and Bagging

Fit a regression tree using rpart

I The fitting process and the visual output of regression trees and
classification trees are very similar.

I Both use the formula method for expressing the model (similar to lm).
I When fitting a regression tree, we need to set method = "anova".
I By default, rpart will make an intelligent guess based on the data

type of the response column
I But it’s recommened to explictly set the method for reproducibility

reasons (auto-guesser may change in future).

m1 <- rpart(formula = Sale_Price ~ .,data = ames_train,
method = "anova")

Jan-Philipp Kolb
Supervised Learning - Regression Trees and Bagging

the m1 output.
m1

n= 2051
##
node), split, n, deviance, yval
* denotes terminal node
##
1) root 2051 1.329920e+13 181620.20
2) Overall_Qual=Very_Poor,Poor,Fair,Below_Average,Average,Above_Average,Good 1699 4.001092e+12 156147.10
4) Neighborhood=North_Ames,Old_Town,Edwards,Sawyer,Mitchell,Brookside,Iowa_DOT_and_Rail_Road,South_and_West_of_Iowa_State_University,Meadow_Village,Briardale,Northpark_Villa,Blueste 1000 1.298629e+12 131787.90
8) Overall_Qual=Very_Poor,Poor,Fair,Below_Average 195 1.733699e+11 98238.33 *
9) Overall_Qual=Average,Above_Average,Good 805 8.526051e+11 139914.80
18) First_Flr_SF< 1150.5 553 3.023384e+11 129936.80 *
19) First_Flr_SF>=1150.5 252 3.743907e+11 161810.90 *
5) Neighborhood=College_Creek,Somerset,Northridge_Heights,Gilbert,Northwest_Ames,Sawyer_West,Crawford,Timberland,Northridge,Stone_Brook,Clear_Creek,Bloomington_Heights,Veenker,Green_Hills 699 1.260199e+12 190995.90
10) Gr_Liv_Area< 1477.5 300 2.472611e+11 164045.20 *
11) Gr_Liv_Area>=1477.5 399 6.311990e+11 211259.60
22) Total_Bsmt_SF< 1004.5 232 1.640427e+11 192946.30 *
23) Total_Bsmt_SF>=1004.5 167 2.812570e+11 236700.80 *
3) Overall_Qual=Very_Good,Excellent,Very_Excellent 352 2.874510e+12 304571.10
6) Overall_Qual=Very_Good 254 8.855113e+11 273369.50
12) Gr_Liv_Area< 1959.5 155 3.256677e+11 247662.30 *
13) Gr_Liv_Area>=1959.5 99 2.970338e+11 313618.30 *
7) Overall_Qual=Excellent,Very_Excellent 98 1.100817e+12 385440.30
14) Gr_Liv_Area< 1990 42 7.880164e+10 325358.30 *
15) Gr_Liv_Area>=1990 56 7.566917e+11 430501.80
30) Neighborhood=College_Creek,Edwards,Timberland,Veenker 8 1.153051e+11 281887.50 *
31) Neighborhood=Old_Town,Somerset,Northridge_Heights,Northridge,Stone_Brook 48 4.352486e+11 455270.80
62) Total_Bsmt_SF< 1433 12 3.143066e+10 360094.20 *
63) Total_Bsmt_SF>=1433 36 2.588806e+11 486996.40 *

Jan-Philipp Kolb
Supervised Learning - Regression Trees and Bagging

Steps of the splits (m1) - explained

I E.g., we start with 2051 observations at the root node (very
beginning) and the first variable we split on (that optimizes a
reduction in SSE) is Overall_Qual.

I We see that at the first node all observations with

Overall_Qual=Very_Poor,Poor,Fair,Below_Average,Average,
Above_Average,Good

go to the 2nd branch.

Jan-Philipp Kolb
Supervised Learning - Regression Trees and Bagging

The 3rd branch

I The number of observations in this branch (1699), their average sales
price (156147.10) and SSE (4.001092e+12) are listed.

I In the 3rd branch we have 352 observations with

Overall_Qual=Very_Good,Excellent,Very_Excellent

I their average sales prices is 304571.10 and the SEE in this region is
2.874510e+12.

Visualization with rpart.plot
I In the default print it will show the percentage of data that fall to

that node and the average sales price for that branch.
I This tree contains 11 internal nodes resulting in 12 terminal nodes.
I This tree is partitioning on 11 variables to produce its model.

Jan-Philipp Kolb
Supervised Learning - Regression Trees and Bagging

The package rpart.plot

rpart.plot(m1)

Overall_Qual = Very_Poor,Poor,Fair,Below_Average,Average,Above_Average,Good

Neighborhood = North_Ames,Old_Town,Edwards,Sawyer,Mitchell,Brookside,Iowa_DOT_and_Rail_Road,South_and_West_of_Iowa_State_University,Meadow_Village,Briardale,Northpark_Villa,Blueste

Overall_Qual = Very_Poor,Poor,Fair,Below_Average

First_Flr_SF < 1151

Gr_Liv_Area < 1478

Total_Bsmt_SF < 1005

Overall_Qual = Very_Good

Gr_Liv_Area < 1960 Gr_Liv_Area < 1990

Neighborhood = College_Creek,Edwards,Timberland,Veenker

Total_Bsmt_SF < 1433

182e+3
100%

156e+3
83%

132e+3
49%

98e+3
10%

140e+3
39%

130e+3
27%

162e+3
12%

191e+3
34%

164e+3
15%

211e+3
19%

193e+3
11%

237e+3
8%

305e+3
17%

273e+3
12%

248e+3
8%

314e+3
5%

385e+3
5%

325e+3
2%

431e+3
3%

282e+3
0%

455e+3
2%

360e+3
1%

487e+3
2%

yes no

Jan-Philipp Kolb
Supervised Learning - Regression Trees and Bagging

Behind the scenes

There are 80 variables in ames_train. So what happened?
I There is often a balance to be achieved in the depth and complexity

of the tree to optimize predictive performance on some unseen data.
I To find this balance, we grow a very large tree as showed and then

prune it back to find an optimal subtree.
I We find this subtree by using a cost complexity parameter (α) that

penalizes our objective function for the number of terminal nodes of
the tree (T).

minimize{SSE + α|T |}

TP <- prune(m1,cp=median(m1$cptable[,'CP']))

Jan-Philipp Kolb
Supervised Learning - Regression Trees and Bagging

Plot the pruned tree
rpart.plot(TP)

Overall_Qual = Very_Poor,Poor,Fair,Below_Average,Average,Above_Average,Good

Neighborhood = North_Ames,Old_Town,Edwards,Sawyer,Mitchell,Brookside,Iowa_DOT_and_Rail_Road,South_and_West_of_Iowa_State_University,Meadow_Village,Briardale,Northpark_Villa,Blueste

Overall_Qual = Very_Poor,Poor,Fair,Below_Average

Gr_Liv_Area < 1478

Overall_Qual = Very_Good

Gr_Liv_Area < 1990

182e+3
100%

156e+3
83%

132e+3
49%

98e+3
10%

140e+3
39%

191e+3
34%

164e+3
15%

211e+3
19%

305e+3
17%

273e+3
12%

385e+3
5%

325e+3
2%

431e+3
3%

yes no

Jan-Philipp Kolb
Supervised Learning - Regression Trees and Bagging

The plotcp
I Lower x-axis - cost complexity - alpha

plotcp(m1)

cp

X
−

va
l R

el
at

iv
e

E
rr

or

0.
2

0.
6

1.
0

Inf 0.085 0.024 0.02 0.015 0.012

1 2 3 4 5 6 7 8 9 10 12

size of tree

Jan-Philipp Kolb
Supervised Learning - Regression Trees and Bagging

The 1-SE rule - how many terminal nodes

I Breiman et al. (1984) suggested to use the smallest tree within 1
standard deviation of the minimum cross validation error (aka the
1-SE rule).

I Thus, we could use a tree with 9 terminal nodes and expect to get
similar results within a small margin of error.

I To illustrate the point of selecting a tree with 12 terminal nodes (or 9
if you go by the 1-SE rule), we can force rpart to generate a full tree
by using cp = 0 (no penalty results in a fully grown tree).

Jan-Philipp Kolb
Supervised Learning - Regression Trees and Bagging

Generate a full tree

I After 12 terminal nodes, we see diminishing returns in error reduction
as the tree grows deeper.

I Thus, we can signifcantly prune our tree and still achieve minimal
expected error.

m2 <- rpart(formula = Sale_Price ~ .,data=ames_train,
method = "anova",control = list(cp = 0, xval = 10))

I control - a list of options that control details of the rpart algorithm.
I cp - complexity parameter. Any split that does not decrease the

overall lack of fit by a factor of cp is not attempted. For instance,
with anova splitting, this means that the overall R-squared must
increase by cp at each step (Pruning).

I xval number of cross-validations.

Jan-Philipp Kolb
Supervised Learning - Regression Trees and Bagging

Plot the result
plotcp(m2);abline(v = 12, lty = "dashed")

cp

X
−

va
l R

el
at

iv
e

E
rr

or

0.
2

0.
6

1.
0

Inf 0.0028 0.00061 0.00025 0.00012 1.9e−05

1 15 31 47 64 80 97 115 136 157

size of tree

Jan-Philipp Kolb
Supervised Learning - Regression Trees and Bagging

Automated tuning by default

I rpart is performing some automated tuning by default, with an
optimal subtree of 11 splits, 12 terminal nodes, and a cross-validated
error of 0.272 (note that this error is equivalent to the predicted
residual error sum of squares statistic (PRESS) but not the MSE).

I We can perform additional tuning to try improve model performance.

Jan-Philipp Kolb
Supervised Learning - Regression Trees and Bagging

https://en.wikipedia.org/wiki/PRESS_statistic

The output cptable

m1$cptable

CP nsplit rel error xerror xstd
1 0.48300624 0 1.0000000 1.0017486 0.05769371
2 0.10844747 1 0.5169938 0.5189120 0.02898242
3 0.06678458 2 0.4085463 0.4126655 0.02832854
4 0.02870391 3 0.3417617 0.3608270 0.02123062
5 0.02050153 4 0.3130578 0.3325157 0.02091087
6 0.01995037 5 0.2925563 0.3228913 0.02127370
7 0.01976132 6 0.2726059 0.3175645 0.02115401
8 0.01550003 7 0.2528446 0.3096765 0.02117779
9 0.01397824 8 0.2373446 0.2857729 0.01902451
10 0.01322455 9 0.2233663 0.2833382 0.01936841
11 0.01089820 10 0.2101418 0.2687777 0.01917474
12 0.01000000 11 0.1992436 0.2621273 0.01957837

Jan-Philipp Kolb
Supervised Learning - Regression Trees and Bagging

Tuning

In addition to the cost complexity (α) parameter, it is also common to
tune:

minsplit:
I The minimum number of data points required to attempt a split

before it is forced to create a terminal node. The default is 20.
Making this smaller allows for terminal nodes that may contain only a
handful of observations to create the predicted value.

maxdepth:
I The maximum number of internal nodes between the root node and

the terminal nodes. The default is 30, which is quite liberal and
allows for fairly large trees to be built.

Jan-Philipp Kolb
Supervised Learning - Regression Trees and Bagging

Special control argument

I rpart uses a special control argument where we provide a list of
hyperparameter values.

I E.g., if we want a model with minsplit = 10 and maxdepth = 12,
we could execute the following:

m3 <- rpart(formula = Sale_Price ~ .,data = ames_train,
method = "anova", control = list(minsplit = 10,

maxdepth = 12, xval = 10)
)

Jan-Philipp Kolb
Supervised Learning - Regression Trees and Bagging

The output cptable of model 3

m3$cptable

CP nsplit rel error xerror xstd
1 0.48300624 0 1.0000000 1.0007911 0.05768347
2 0.10844747 1 0.5169938 0.5192042 0.02900726
3 0.06678458 2 0.4085463 0.4140423 0.02835387
4 0.02870391 3 0.3417617 0.3556013 0.02106960
5 0.02050153 4 0.3130578 0.3251197 0.02071312
6 0.01995037 5 0.2925563 0.3151983 0.02095032
7 0.01976132 6 0.2726059 0.3106164 0.02101621
8 0.01550003 7 0.2528446 0.2913458 0.01983930
9 0.01397824 8 0.2373446 0.2750055 0.01725564
10 0.01322455 9 0.2233663 0.2677136 0.01714828
11 0.01089820 10 0.2101418 0.2506827 0.01561141
12 0.01000000 11 0.1992436 0.2480154 0.01583340

Jan-Philipp Kolb
Supervised Learning - Regression Trees and Bagging

Grid search
I We can avoid it to manually assess multiple models, by performing a

grid search to automatically search across a range of differently tuned
models to identify the optimal hyerparameter setting.

I To perform a grid search we first create our hyperparameter grid.

hyper_grid <- expand.grid(
minsplit = seq(5, 20, 1),
maxdepth = seq(8, 15, 1)

)

I The result are 128 combinations - 128 different models.

head(hyper_grid)

minsplit maxdepth
1 5 8
2 6 8
3 7 8
4 8 8
5 9 8
6 10 8

nrow(hyper_grid)

[1] 128

Jan-Philipp Kolb
Supervised Learning - Regression Trees and Bagging

A loop to autimate modeling

I We iterate through each minsplit and maxdepth combination.
I We save each model into its own list item.

models <- list()
for (i in 1:nrow(hyper_grid)) {

get minsplit, maxdepth values at row i
minsplit <- hyper_grid$minsplit[i]
maxdepth <- hyper_grid$maxdepth[i]
train a model and store in the list
models[[i]] <- rpart(formula=Sale_Price~.,data=ames_train,

method="anova",control=list(minsplit=minsplit,
maxdepth=maxdepth)

)
}

Jan-Philipp Kolb
Supervised Learning - Regression Trees and Bagging

A function to extract the minimum error

I We create functions to extract the minimum error associated with the
optimal cost complexity α value for each model.

function to get optimal cp
get_cp <- function(x) {

min <- which.min(x$cptable[, "xerror"])
cp <- x$cptable[min, "CP"]

}

function to get minimum error
get_min_error <- function(x) {

min <- which.min(x$cptable[, "xerror"])
xerror <- x$cptable[min, "xerror"]

}

Jan-Philipp Kolb
Supervised Learning - Regression Trees and Bagging

Apply the functions

hyper_grid %>%
mutate(

cp = purrr::map_dbl(models, get_cp),
error = purrr::map_dbl(models, get_min_error)
) %>%

arrange(error) %>%
top_n(-5, wt = error)

minsplit maxdepth cp error
1 5 13 0.0108982 0.2421256
2 6 8 0.0100000 0.2453631
3 12 10 0.0100000 0.2454067
4 8 13 0.0100000 0.2459588
5 19 9 0.0100000 0.2460173

Jan-Philipp Kolb
Supervised Learning - Regression Trees and Bagging

Exercise

Apply the final optimal model

Predict on our test dataset

Jan-Philipp Kolb
Supervised Learning - Regression Trees and Bagging

The final optimal model
Apply the final optimal model:
optimal_tree <- rpart(formula = Sale_Price ~ .,

data = ames_train,method = "anova",
control = list(minsplit = 5, maxdepth = 13, cp = 0.0108982)
)

Predict on our test dataset:
pred <- predict(optimal_tree, newdata = ames_test)

I The final RMSE is 39145.39 which suggests that, on average, our
predicted sales prices are about 39,145 Dollar off from the actual sales
price.

RMSE(pred = pred, obs = ames_test$Sale_Price)

[1] 39145.39

Jan-Philipp Kolb
Supervised Learning - Regression Trees and Bagging

Exercise: rpart Kyphosis

Consider the Kyphosis data frame
1) Which variables are in the kyphosis dataset
2) Build a tree to classify Kyphosis from Age, Number and Start.

Consider the tree build above.
3) Which variables are used to explain Kyphosis presence?
4) How many observations contain the terminal nodes.

Consider the Kyphosis data frame.
5) Build a tree using the first 60 observations of kyphosis.
6) Predict the kyphosis presence for the other 21 observations.
7) Which is the misclassification rate (prediction error)

Jan-Philipp Kolb
Supervised Learning - Regression Trees and Bagging

https://www.r-exercises.com/2016/12/13/recursive-partitioning-and-regression-trees-exercises/

Exercise: rpart iris

Consider the iris data frame
1) Build a tree to classify Species from the other variables.
2) Plot the trees, add nodes information.

Consider the tree build before
3) Prune the the using median complexity parameter (cp) associated to

the tree.
4) Plot in the same window, the pruned and the original tree.
5) In which terminal nodes is clasified each oobservations of iris?
6) Which Specie has a flower of Petal.Length greater than 2.45 and

Petal.Width less than 1.75.

Jan-Philipp Kolb
Supervised Learning - Regression Trees and Bagging

Advantages of regression trees

I They are very interpretable.
I Making predictions is fast (no complicated calculations, just looking

up constants in the tree).
I It’s easy to understand what variables are important for the prediction.
I The internal nodes (splits) are those variables that most largely

reduced the SSE.
I If some data is missing, we might not be able to go all the way down

the tree to a leaf, but we can still make a prediction by averaging all
the leaves in the sub-tree.

I The model provides a non-linear response, so it can work when the
true regression surface is not smooth.

I If it is smooth, the piecewise-constant surface can approximate it
arbitrarily closely (with enough leaves).

I There are fast, reliable algorithms to learn these trees.

Jan-Philipp Kolb
Supervised Learning - Regression Trees and Bagging

Weaknesses of regression trees

I Single regression trees have high variance, resulting in unstable
predictions (an alternative subsample of training data can significantly
change the terminal nodes).

I Due to the high variance single regression trees have poor predictive
accuracy.

Jan-Philipp Kolb
Supervised Learning - Regression Trees and Bagging

Ensembling
Ensembles are machine learning methods for combining predictions from
multiple separate models.

Bagging
attempts to reduce the chance of overfitting complex models.

I It trains a large number of “strong” learners in parallel.
I A strong learner is a model that’s relatively unconstrained.
I Bagging then combines all the strong learners together in order to
“smooth out” their predictions.

Boosting
attempts to improve the predictive flexibility of simple models.

I It trains a large number of “weak” learners in sequence.
I A weak learner is a constrained model (limit for max depth of tree).
I Each one in the sequence focuses on learning from the mistakes of

the one before it.
I Boosting combines all the weak learners into a single strong learner.Jan-Philipp Kolb

Supervised Learning - Regression Trees and Bagging

https://elitedatascience.com/overfitting-in-machine-learning

Bagging and boosting

While bagging and boosting are both ensemble methods, they approach
the problem from opposite directions.

Bagging uses complex base models and tries to “smooth out” their
predictions, while boosting uses simple base models and tries to “boost”
their aggregate complexity.

Jan-Philipp Kolb
Supervised Learning - Regression Trees and Bagging

Bagging

I Single tree models suffer from high variance, they are highly unstable
and poor predictors.

I Pruning helps, but there are alternative methods that exploite the
variability of single trees in a way that can significantly improve
performance.

I Bootstrap aggregating (bagging) is one such approach (originally
proposed by Breiman, 1996).

I Bagging is a method for combining predictions from different
regression or classification models.

I The results of the models are then averaged - in the simplest case
model predictions are included with the same weight.

I The weights could depend on the quality of the model prediction,
i.e. “good” models are more important than “bad” models.

I Bagging leads to significantly improved predictions in the case of
unstable models.

Jan-Philipp Kolb
Supervised Learning - Regression Trees and Bagging

https://www.r-bloggers.com/improve-predictive-performance-in-r-with-bagging/
https://en.wikipedia.org/wiki/Decision_tree_pruning

Bagging follows three simple steps:

I 1.) Create m bootstrap samples from the training data. Bootstrapped
samples allow us to create many slightly different data sets but with
the same distribution as the overall training set.

I 2.) For each bootstrap sample train a single, unpruned regression tree.
I 3.) Average individual predictions from each tree to create an overall

average predicted value.

Jan-Philipp Kolb
Supervised Learning - Regression Trees and Bagging

The bagging process.

Jan-Philipp Kolb
Supervised Learning - Regression Trees and Bagging

About bagging

I This process can be applied to any regression or classification model;
I It provides the greatest improvement for models that have high

variance.
I More stable parametric models such as linear regression and

multi-adaptive regression splines tend to experience less improvement
in predictive performance.

I On average, a bootstrap sample will contain 63 per cent of the
training data.

I This leaves about 33 per cent (13) of the data out of the
bootstrapped sample. We call this the out-of-bag (OOB) sample.

I We can use the OOB observations to estimate the model’s accuracy,
creating a natural cross-validation process.

Jan-Philipp Kolb
Supervised Learning - Regression Trees and Bagging

Bagging with ipred

I Fitting a bagged tree model is quite simple.
I Instead of using rpart we use ipred::bagging.
I We use coob = TRUE to use the OOB sample to estimate the test

error.

Jan-Philipp Kolb
Supervised Learning - Regression Trees and Bagging

Train bagged model

set.seed(123)
(bagged_m1 <- bagging(formula = Sale_Price ~ .,

data = ames_train,coob= TRUE))

##
Bagging regression trees with 25 bootstrap replications
##
Call: bagging.data.frame(formula = Sale_Price ~ ., data = ames_train,
coob = TRUE)
##
Out-of-bag estimate of root mean squared error: 36543.37

I We see that our initial estimate error is close to 3000 Dollar less than
the test error we achieved with our single optimal tree (36543
vs. 39145)

Jan-Philipp Kolb
Supervised Learning - Regression Trees and Bagging

Things to note typically

I The more trees the better - we are averaging over more high variance
single trees.

I We see a dramatic reduction in variance (and hence our error) and
eventually the reduction in error will flatline

I You need less than 50 trees to stabilize the error.

Jan-Philipp Kolb
Supervised Learning - Regression Trees and Bagging

Number of bootstrap samples
I By default bagging performs 25 bootstrap samples and trees but we

may require more.

assess 10-50 bagged trees
ntree <- 10:50
create empty vector to store OOB RMSE values
rmse <- vector(mode = "numeric", length = length(ntree))
for (i in seq_along(ntree)) {

reproducibility
set.seed(123)
perform bagged model
model <- bagging(formula = Sale_Price ~ .,
data=ames_train,coob= TRUE,nbagg=ntree[i]

)
get OOB error
rmse[i] <- model$err

}

Jan-Philipp Kolb
Supervised Learning - Regression Trees and Bagging

Plot the result
I The error is stabilizing at about 25 trees - we will improve by bagging

more trees.

plot(ntree, rmse, type = 'l', lwd = 2)
abline(v = 25, col = "red", lty = "dashed")

10 20 30 40 50

36
50

0
38

00
0

ntree

rm
se

Jan-Philipp Kolb
Supervised Learning - Regression Trees and Bagging

Bagging with caret

I Bagging with ipred is simple but there are some additional benefits
of bagging with caret.

1.) Its easier to perform cross-validation. Although we can use the OOB
error, performing cross validation will provide a more robust understanding
of the true expected test error.

2.) We can assess variable importance across the bagged trees.

Jan-Philipp Kolb
Supervised Learning - Regression Trees and Bagging

https://topepo.github.io/caret/variable-importance.html

Excursus: Variable importance (vi)

I vi measures help understand the results obtained from complex
machine learning models

I There is no general consensus on the “best” way to compute - or
even define - the concept of variable importance.

I See a list of many possible approaches to compute vi in the help file
of the command varImp

?caret::varImp

I vi refers to how much a given model “uses” that variable to make
accurate predictions. The more a model relies on a variable to make
predictions, the more important it is for the model.

Jan-Philipp Kolb
Supervised Learning - Regression Trees and Bagging

https://cran.r-project.org/web/packages/datarobot/vignettes/VariableImportance.html

A 10-fold cross-validated model.

Specify 10-fold cross validation
ctrl <- trainControl(method = "cv", number = 10)

bagged_cv <- train(Sale_Price ~ .,data = ames_train,
method = "treebag",trControl = ctrl,importance = TRUE)

I treebag- means we use a bagging tree

Jan-Philipp Kolb
Supervised Learning - Regression Trees and Bagging

Assess results

bagged_cv

Bagged CART
##
2051 samples
80 predictor
##
No pre-processing
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 1846, 1845, 1847, 1845, 1846, 1847, ...
Resampling results:
##
RMSE Rsquared MAE
36477.25 0.8001783 24059.85

Jan-Philipp Kolb
Supervised Learning - Regression Trees and Bagging

Assess results with a plot (top 20 variables)
I Here, variable importance is measured by assessing the total amount

SSE is decreased by splits over a given predictor, averaged over all m
trees.

plot(varImp(bagged_cv), 20)

Importance

Bsmt_QualGood
FoundationPConc

Full_Bath
Lot_Area

Longitude
Overall_QualVery_Good

Second_Flr_SF
Fireplace_QuNo_Fireplace

Exter_QualGood
Mas_Vnr_Area

Fireplaces
Kitchen_QualTypical

Garage_Area
Year_Remod_Add

Garage_Cars
Exter_QualTypical

First_Flr_SF
Year_Built

Total_Bsmt_SF
Gr_Liv_Area

20 40 60 80 100Jan-Philipp Kolb
Supervised Learning - Regression Trees and Bagging

Extensions

I If we compare this to the test set out of sample we see that our
cross-validated error estimate was very close.

pred <- predict(bagged_cv, ames_test)
RMSE(pred, ames_test$Sale_Price)

[1] 35262.59

I We have successfully reduced our error to about $35k;
I Extensions of this bagging concept (random forests and GBMs) can

significantly reduce this further.

Jan-Philipp Kolb
Supervised Learning - Regression Trees and Bagging

Resources and links

I Breimann (1984) - Classification and Regression Trees
I Vignette for package partykit

I Conditional Inference Trees
I Conditional inference trees vs traditional decision trees
I Video on tree based methods
I An example of practical machine learning using R

Jan-Philipp Kolb
Supervised Learning - Regression Trees and Bagging

https://www.amazon.com/Classification-Regression-Wadsworth-Statistics-Probability/dp/0412048418
https://cran.r-project.org/web/packages/partykit/vignettes/ctree.pdf
https://rpubs.com/awanindra01/ctree
https://stats.stackexchange.com/questions/12140/conditional-inference-trees-vs-traditional-decision-trees
https://www.youtube.com/watch?v=6ENTbK3yQUQ
https://rstudio-pubs-static.s3.amazonaws.com/64455_df98186f15a64e0ba37177de8b4191fa.html

