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Insufficient Solution

I When the number of features exceed the number of observations
(p > n), the OLS solution matrix is not invertible.

I This causes significant issues because it means:

(1) The least-squares estimates are not unique. There are an infinite set
of solutions available and most of these solutions overfit the data.

(2) In many instances the result will be computationally infeasible.
I To resolve this issue we can remove variables until p < n and then fit

an OLS regression model.
I Although we can use pre-processing tools to apply this manual

approach (Kuhn and Johnson, 2013, pp. 43-47), it can be
cumbersome and prone to errors.
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Regularized Regression

I When we experience these concerns, one alternative to OLS
regression is to use regularized regression (also commonly referred to
as penalized models or shrinkage methods) to control the parameter
estimates.

I Regularized regression puts contraints on the magnitude of the
coefficients and will progressively shrink them towards zero. This
constraint helps to reduce the magnitude and fluctuations of the
coefficients and will reduce the variance of our model.
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Regularization

elitedatascience.com definition
Regularization is a technique used to prevent overfitting by artificially
penalizing model coefficients.

I It can discourage large coefficients (by dampening them).
I It can also remove features entirely (by setting their coefficients to 0).
I The “strength” of the penalty is tunable.

Wikipedia definition of Regularization
Regularization is the process of adding information in order to solve an
ill-posed problem or to prevent overfitting.
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Strenghts and weaknesses of regularization

Strengths:
Linear regression is straightforward to understand and explain, and can be
regularized to avoid overfitting. In addition, linear models can be updated
easily with new data

Weaknesses:
Linear regression in general performs poorly when there are non-linear
relationships. They are not naturally flexible enough to capture more
complex patterns, and adding the right interaction terms or polynomials
can be tricky and time-consuming.
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Three regularized regression algorithms

Lasso regression
I Absolute size of coefficients is penalized.
I Coefficients can be exactly 0.

Ridge regression
I Squared size of coefficients is penalized.
I Smaller coefficients, but it doesn’t force them to 0.

Elastic-net
I A mix of both absolute and squared size is penalzied.
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The objective function of regularized
regression methods. . .

I is very similar to OLS regression;
I And a penalty parameter (P) is added.

minimize{SSE + P}

I There are two main penalty parameters, which have a similar effect.
I They constrain the size of the coefficients such that the only way the

coefficients can increase is if we experience a comparable decrease in
the sum of squared errors (SSE).
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Preparations

I Most of the following slides are based on the UC Business
Analytics R Programming Guide

Necessary packages
library(rsample) # data splitting
library(glmnet) # implementing regularized regression approaches
library(dplyr) # basic data manipulation procedures
library(ggplot2) # plotting
library(knitr) # for tables
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The example dataset

library(AmesHousing)
ames_data <- AmesHousing::make_ames()
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Create training (70%) and test (30%) sets

I set.seed is used for reproducibility
I initial_split is used to split data in training and test data

set.seed(123)
ames_split <- rsample::initial_split(ames_data, prop = .7,

strata = "Sale_Price")
ames_train <- rsample::training(ames_split)
ames_test <- rsample::testing(ames_split)
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Ridge Regression
I Ridge regression (Hoerl, 1970) controls the coefficients by adding
λ

∑p
j=1 β

2
j to the objective function.

I This penalty parameter is referred to as “L2” as it signifies a
second-order penalty being used on the coefficients.

minimize{SSE + λ

p∑
j=1

β2
j }

I This penalty parameter can take on a wide range of values, which is
controlled by the tuning parameter λ.

I When λ = 0, there is no effect and our objective function equals the
normal OLS regression objective function of simply minimizing SSE.

I As λ→∞, the penalty becomes large and forces our coefficients to
zero.
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Exemplar coefficients
Exemplar coefficients have been regularized with λ ranging from 0 to over
8,000 (log(8103)=9).
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How to choose the right λ

I Although these coefficients were scaled and centered prior to the
analysis, you will notice that some are extremely large when λ→ 0.

I We have a large negative parameter that fluctuates until log(λ) ≈ 2
where it then continuously shrinks to zero.

I This is indicitive of multicollinearity and likely illustrates that
constraining our coefficients with log(λ) > 2 may reduce the variance,
and therefore the error, in our model.

I But how do we find the amount of shrinkage (or λ) that minimizes
our error?
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Implementation in glmnet
I glmnet does not use the formula method (y ~ x) so prior to modeling

we need to create our feature and target set.
I The model.matrix function is used on our feature set, which will

automatically dummy encode qualitative variables
I We also log transform our response variable due to its skeweness.

plot(density(ames_data$Sale_Price),main="")
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Training and testing feature model matrices
and response vectors.

I We use model.matrix(...)[, -1] to discard the intercept

ames_train_x <- model.matrix(Sale_Price ~ ., ames_train)[, -1]
ames_train_y <- log(ames_train$Sale_Price)

ames_test_x <- model.matrix(Sale_Price ~ ., ames_test)[, -1]
ames_test_y <- log(ames_test$Sale_Price)

# What is the dimension of of your feature matrix?
dim(ames_train_x)

## [1] 2054 307
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Behind the scenes

I The alpha parameter tells glmnet to perform a Ridge (α = 0), Lasso
(α = 1), or Elastic Net (0 ≤ α ≤ 1) model.

I Behind the scenes, glmnet is doing two things that you should be
aware of:

(1.) It is essential that predictor variables are standardized when
performing regularized regression. glmnet performs this for you. If you
standardize your predictors prior to glmnet you can turn this argument off
with standardize=FALSE.

(2.) glmnet will perform Ridge models across a wide range of λ
parameters, which are illustrated in the figure on the next slide.

ames_ridge <- glmnet(x = ames_train_x,y = ames_train_y,
alpha = 0)
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A wide range of λ parameters
plot(ames_ridge, xvar = "lambda")
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λ values in glmnet

I We can see the exact λ values applied with ames_ridge$lambda.
I You can specify your own λ values,
I By default glmnet applies 100 λ values that are data derived.
I Normally you will have little need to adjust the default λ values.

head(ames_ridge$lambda)

## [1] 289.0010 263.3270 239.9337 218.6187 199.1972 181.5011
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Access the coefficients with coef.

I The coefficients are stored for each model in order of largest to
smallest λ.

I The coefficients for the Gr_Liv_Area and TotRms_AbvGrd features
for the largest λ (279.1035) and smallest λ (0.02791035) are visible.

I The largest λ value has pushed these coefficients to nearly 0.

coef(ames_ridge)[c("Gr_Liv_Area", "TotRms_AbvGrd"),100]

## Gr_Liv_Area TotRms_AbvGrd
## 0.0001108687 0.0083032186

coef(ames_ridge)[c("Gr_Liv_Area", "TotRms_AbvGrd"), 1]

## Gr_Liv_Area TotRms_AbvGrd
## 5.848028e-40 1.341550e-37

I But how much improvement we are experiencing in our model.
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Tuning

I Recall that λ is a tuning parameter that helps to control our model
from over-fitting to the training data.

I To identify the optimal λ value we need to perform cross-validation
(CV).

I cv.glmnet provides a built-in option to perform k-fold CV, and by
default, performs 10-fold CV.

ames_ridge <- cv.glmnet(x = ames_train_x,y = ames_train_y,
alpha = 0)
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Results of cv Ridge regression
plot(ames_ridge)
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I The plot illustrates the 10-fold CV mean squared error (MSE) across
the λ values.

I We see no substantial improvement;
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The plot explained (I)

I As we constrain our coefficients with log(λ) ≤ 0 penalty, the MSE
rises considerably.

I The numbers at the top of the plot (301) just refer to the number of
variables in the model.

I Ridge regression does not force any variables to exactly zero so all
features will remain in the model.
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The plot explained (II)

min(ames_ridge$cvm) # minimum MSE

## [1] 0.01955871

ames_ridge$lambda.min # lambda for this min MSE

## [1] 0.1542312

# 1 st.error of min MSE
ames_ridge$cvm[ames_ridge$lambda == ames_ridge$lambda.1se]

## [1] 0.02160821

ames_ridge$lambda.1se # lambda for this MSE

## [1] 0.5169216
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The plot explained (III)

I The advantage of identifying the λ with an MSE within one standard
error becomes more obvious with the Lasso and Elastic Net models.

I For now we can assess this visually.
I We plot the coefficients across the λ values and the dashed red line

represents the largest λ that falls within one standard error of the
minimum MSE.

I This shows you how much we can constrain the coefficients while still
maximizing predictive accuracy.

ames_ridge_min <- glmnet(x = ames_train_x,y = ames_train_y,
alpha = 0)
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Coefficients across the λ values
plot(ames_ridge_min, xvar = "lambda")
abline(v = log(ames_ridge$lambda.1se), col = "red",

lty = "dashed")
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Advantages and Disadvantages

I The Ridge regression model has pushed many of the correlated
features towards each other rather than allowing for one to be wildly
positive and the other wildly negative.

I Many of the non-important features have been pushed closer to zero.
I We have reduced the noise in our data ⇒ more clarity in identifying

the true signals.

coef(ames_ridge, s = "lambda.1se") %>%
filter(row != "(Intercept)") %>%
top_n(25, wt = abs(value)) %>%
ggplot(aes(value, reorder(row, value))) +
geom_point() +
ggtitle("Top 25 influential variables") +
xlab("Coefficient") +
ylab(NULL)
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Top 25 influential variables
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Exercise: ridge regression (I)

1) Load the lars package and the diabetes dataset
2) Load the glmnet package to implement ridge regression.

The dataset has three matrices x, x2 and y. x has a smaller set of
independent variables while x2 contains the full set with quadratic and
interaction terms. y is the dependent variable which is a quantitative
measure of the progression of diabetes.

3) Generate separate scatterplots with the line of best fit for all the
predictors in x with y on the vertical axis.

4) Regress y on the predictors in x using OLS. We will use this result as
benchmark for comparison.
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Exercise: ridge regression (II)

5) Fit the ridge regression model using the glmnet function and plot the
trace of the estimated coefficients against lambdas. Note that
coefficients are shrunk closer to zero for higher values of lambda.

6) Use the cv.glmnet function to get the cross validation curve and the
value of lambda that minimizes the mean cross validation error.

7) Using the minimum value of lambda from the previous exercise, get the
estimated beta matrix. Note that coefficients are lower than least
squares estimates.

8) To get a more parsimonious model we can use a higher value of lambda
that is within one standard error of the minimum. Use this value of
lambda to get the beta coefficients. Note the shrinkage effect on the
estimates.
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Exercise: ridge regression (III)

9) Split the data randomly between a training set (80%) and test set
(20%). We will use these to get the prediction standard error for least
squares and ridge regression models.

10) Fit the ridge regression model on the training and get the estimated
beta coefficients for both the minimum lambda and the higher lambda
within 1-standard error of the minimum.

11) Get predictions from the ridge regression model for the test set and
calculate the prediction standard error. Do this for both the minimum
lambda and the higher lambda within 1-standard error of the minimum.

12) Fit the least squares model on the training set.

13) Get predictions from the least squares model for the test set and
calculate the prediction standard error.
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Ridge and Lasso

A Ridge model. . .
I . . . is good if we need to retain all features, yet reduce the noise that

less influential variables may create and minimize multicollinearity.
I . . . does not perform feature selection. If greater interpretation is

necessary where you need to reduce the signal in your data to a
smaller subset then a Lasso model may be preferable.

I We could remove less important variables.
I We can do that manually by examining p-values of coefficients and

discarding those variables whose coefficients are not significant.
I But this can become tedious for classification problems with many

independent variables
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Lasso Regression

I Originally introduced in geophysics literature in 1986
I The least absolute shrinkage and selection operator (Lasso) model

was rediscovered and popularized in 1996 by Robert Tibshirani
I It is an alternative to Ridge regression that has a small modification

to the penalty in the objective function.
I Rather than the L2 penalty we use the following L1 penalty
λ

∑p
j=1 |βj | in the objective function.

minimize{SSE + λ

p∑
j=1
|βj |}

Jan-Philipp Kolb
Regularization methods



Lasso penalty pushes coefficients to zero

Lasso improves the model with regularization and conducts automated
feature selection.
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The reduction of coefficients

I 15 variables for log(λ) = −5
I 12 variables for log(λ) = −1
I 3 variables for log(λ) = 1

When a data set has many features, Lasso can be used to identify and
extract those features with the largest (and most consistent) signal.

Implementation Lasso regression to ames data
I Implementing Lasso follows the same logic as implementing the Ridge

model, we just need to switch α = 1 within glmnet.

ames_lasso<-glmnet(x=ames_train_x,y=ames_train_y,alpha=1)
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A quick drop in number of features
I Very large coefficients for ols (highly correlated)
I As model is constrained - these noisy features are pushed to 0.
I CV is necessary to determine right value for λ

plot(ames_lasso, xvar = "lambda")
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Tuning with cv.glmnet

I cv.glmnet with alpha=1 is used to perform cv.

ames_lasso<-cv.glmnet(x=ames_train_x,y=ames_train_y,alpha=1)
names(ames_lasso)

## [1] "lambda" "cvm" "cvsd" "cvup" "cvlo"
## [6] "nzero" "name" "glmnet.fit" "lambda.min" "lambda.1se"
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MSE for cross validation
I MSE can be minimized with −6 ≤ log(λ) ≤ −4
I Also the number of features can be reduced (156 ≤ p ≤ 58)

plot(ames_lasso)
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Minimum and one standard error MSE and λ
values.

min(ames_lasso$cvm) # minimum MSE

## [1] 0.02246344

ames_lasso$lambda.min # lambda for this min MSE

## [1] 0.00332281

# 1 st.error of min MSE
ames_lasso$cvm[ames_lasso$lambda == ames_lasso$lambda.1se]

## [1] 0.02482119

ames_lasso$lambda.1se # lambda for this MSE

## [1] 0.01472211
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MSE within one standard error

I The advantage of identifying the λ with an MSE within one standard
error becomes more obvious.

I If we use the λ that drives the minimum MSE we can reduce our
feature set from 307 down to less than 160.

I There is some variability with this MSE and we can assume that we
can achieve a similar MSE with a slightly more constrained model
(only 63 features).

I If describing and interpreting the predictors is an important outcome
of your analysis, this will help.
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Model with minimum MSE
plot(ames_lasso, xvar = "lambda")
abline(v=log(ames_lasso$lambda.min),col="red",lty="dashed")
abline(v=log(ames_lasso$lambda.1se),col="red",lty="dashed")
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Advantages and Disadvantages

I Similar to Ridge, the Lasso pushes many of the collinear features
towards each other rather than allowing for one to be wildly positive
and the other wildly negative.

I Unlike Ridge, the Lasso will actually push coefficients to zero and
perform feature selection.

I This simplifies and automates the process of identifying those feature
most influential to predictive accuracy.
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Rcode for plotting influential variables

coef(ames_lasso, s = "lambda.1se") %>%
tidy() %>%
filter(row != "(Intercept)") %>%
ggplot(aes(value, reorder(row, value), color = value > 0)) +
geom_point(show.legend = FALSE) +
ggtitle("Influential variables") +
xlab("Coefficient") +
ylab(NULL)
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Plot Influential variables
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MSE for Ridge and Lasso

# minimum Ridge MSE
min(ames_ridge$cvm)

## [1] 0.01955871

# minimum Lasso MSE
min(ames_lasso$cvm)

## [1] 0.02246344
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Elastic net

I Elastic-Net is a compromise between Lasso and Ridge.
I Elastic-Net penalizes a mix of both absolute and squared size.

I The ratio of the two penalty types should be tuned.
I The overall strength should also be tuned.
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Elastic Nets

A generalization of the Ridge and Lasso models is the Elastic Net (Zou
and Hastie, 2005), which combines the two penalties.

minimize{SSE + λ

p∑
j=1

β2
j + λ2

p∑
j=1
|βj |}
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Summary overview

I A result of Lasso is that typically when two strongly correlated
features are pushed towards zero, one may be pushed fully to zero
while the other remains in the model.

I The process of one being in and one being out is not very systematic.
I In contrast, the Ridge regression penalty is a little more effective in

systematically reducing correlated features together.
I The advantage of the Elastic Net model is that it enables effective

regularization via the Ridge penalty with the feature selection
characteristics of the Lasso penalty.

Jan-Philipp Kolb
Regularization methods



Implementation

I alpha=.5 performs an equal combination of penalties

lasso <- glmnet(ames_train_x, ames_train_y, alpha = 1.0)
elastic1 <- glmnet(ames_train_x, ames_train_y, alpha = 0.25)
elastic2 <- glmnet(ames_train_x, ames_train_y, alpha = 0.75)
ridge <- glmnet(ames_train_x, ames_train_y, alpha = 0.0)
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The four model results plottet
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Tuning the Elastic Net model

I λ is the primary tuning parameter in Ridge and Lasso models.
I With Elastic Nets, we want to tune the λ and the alpha parameters.
I To set up our tuning, we create a common fold_id, which just

allows us to apply the same CV folds to each model.

# maintain the same folds across all models
fold_id <- sample(1:10, size = length(ames_train_y),

replace=TRUE)
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Creation of a tuning grid

I We then create a tuning grid that searches across a range of alphas
from 0-1, and empty columns where we’ll dump our model results
into.

# search across a range of alphas
tuning_grid <- tibble::tibble(

alpha = seq(0, 1, by = .1),
mse_min = NA,
mse_1se = NA,
lambda_min = NA,
lambda_1se = NA

)
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Iteration over α values - Elastic Net

Now we can iterate over each α value, apply a CV Elastic Net, and extract
the minimum and one standard error MSE values and their respective λ
values.

for(i in seq_along(tuning_grid$alpha)) {
# fit CV model for each alpha value
fit <- cv.glmnet(ames_train_x, ames_train_y,

alpha = tuning_grid$alpha[i],
foldid = fold_id)

# extract MSE and lambda values
tuning_grid$mse_min[i]<-fit$cvm[fit$lambda==fit$lambda.min]
tuning_grid$mse_1se[i]<-fit$cvm[fit$lambda==fit$lambda.1se]
tuning_grid$lambda_min[i]<-fit$lambda.min
tuning_grid$lambda_1se[i]<-fit$lambda.1se
}
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The resulting tuning grid
tuning_grid

## # A tibble: 11 x 5
## alpha mse_min mse_1se lambda_min lambda_1se
## <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0 0.0198 0.0227 0.141 0.623
## 2 0.1 0.0205 0.0237 0.0365 0.134
## 3 0.2 0.0210 0.0243 0.0182 0.0736
## 4 0.3 0.0213 0.0249 0.0122 0.0539
## 5 0.4 0.0215 0.0249 0.00912 0.0404
## 6 0.5 0.0216 0.0250 0.00729 0.0323
## 7 0.6 0.0217 0.0255 0.00608 0.0296
## 8 0.7 0.0218 0.0255 0.00521 0.0253
## 9 0.8 0.0219 0.0255 0.00456 0.0222
## 10 0.9 0.0219 0.0255 0.00405 0.0197
## 11 1 0.0220 0.0256 0.00365 0.0177
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Plot the MSE

I If we plot the MSE ± one standard error for the optimal λ value for
each alpha setting, we see that they all fall within the same level of
accuracy.

I We could select a full Lasso model with λ = 0.02062776, gain the
benefits of its feature selection capability and reasonably assume no
loss in accuracy.

tuning_grid %>%
mutate(se = mse_1se - mse_min) %>%
ggplot(aes(alpha, mse_min)) +
geom_line(size = 2) +
geom_ribbon(aes(ymax = mse_min + se, ymin = mse_min - se),

alpha = .25) +
ggtitle("MSE +/- one standard error")
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MSE +/- one standard error
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Predicting
I With the preferred model, you can predict the same model on a

new data set.
I The only caveat is you need to supply predict an s parameter with the

preferred models λ value.
I E.g., here we create a Lasso model, with a minimum MSE of 0.022.

# some best model
cv_lasso <- cv.glmnet(ames_train_x, ames_train_y, alpha = 1.0)
min(cv_lasso$cvm)

## [1] 0.02036225

I I use the minimum λ value to predict on the unseen test set and
obtain a slightly lower MSE of 0.015.

# predict
pred <- predict(cv_lasso, s = cv_lasso$lambda.min, ames_test_x)
mean((ames_test_y - pred)^2)

## [1] 0.02040651
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The package caret - Classification and
Regression Training

Vignette for the caret package
library(caret)
train_control <- trainControl(method = "cv", number = 10)
caret_mod <- train(x = ames_train_x,y = ames_train_y,

method = "glmnet",
preProc = c("center", "scale", "zv", "nzv"),
trControl = train_control,
tuneLength = 10)
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Output for caret model
caret_mod

## glmnet
##
## 2054 samples
## 307 predictor
##
## Pre-processing: centered (113), scaled (113), remove (194)
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 1849, 1848, 1847, 1850, 1849, 1849, ...
## Resampling results across tuning parameters:
##
## alpha lambda RMSE Rsquared MAE
## 0.1 0.0001335259 0.1529759 0.8626587 0.09899496
## 0.1 0.0003084622 0.1529697 0.8626702 0.09899085
## 0.1 0.0007125878 0.1527312 0.8630945 0.09882473
## 0.1 0.0016461703 0.1523040 0.8638461 0.09858775
## 0.1 0.0038028670 0.1518043 0.8647353 0.09829651
## 0.1 0.0087851163 0.1511589 0.8658996 0.09792048
## 0.1 0.0202947586 0.1512482 0.8658861 0.09846301
## 0.1 0.0468835259 0.1542133 0.8616162 0.10095388
## 0.1 0.1083070283 0.1613716 0.8525304 0.10562397
## 0.1 0.2502032890 0.1783894 0.8378278 0.11798124
## 0.2 0.0001335259 0.1530144 0.8625906 0.09901019
## 0.2 0.0003084622 0.1529054 0.8627844 0.09893138
## 0.2 0.0007125878 0.1526093 0.8633042 0.09873037
## 0.2 0.0016461703 0.1520597 0.8642754 0.09843475
## 0.2 0.0038028670 0.1515362 0.8652246 0.09801179
## 0.2 0.0087851163 0.1511130 0.8660407 0.09800962
## 0.2 0.0202947586 0.1531822 0.8629272 0.10015289
## 0.2 0.0468835259 0.1583264 0.8557192 0.10357302
## 0.2 0.1083070283 0.1713989 0.8406963 0.11319420
## 0.2 0.2502032890 0.2015887 0.8196545 0.13607965
## 0.3 0.0001335259 0.1530175 0.8625852 0.09901246
## 0.3 0.0003084622 0.1528417 0.8628943 0.09887464
## 0.3 0.0007125878 0.1524303 0.8636143 0.09862411
## 0.3 0.0016461703 0.1519261 0.8645281 0.09829674
## 0.3 0.0038028670 0.1513782 0.8655399 0.09792851
## 0.3 0.0087851163 0.1517901 0.8649707 0.09874489
## 0.3 0.0202947586 0.1548532 0.8604377 0.10124984
## 0.3 0.0468835259 0.1631931 0.8487612 0.10712019
## 0.3 0.1083070283 0.1804627 0.8317568 0.12000176
## 0.3 0.2502032890 0.2242488 0.8048855 0.15383093
## 0.4 0.0001335259 0.1530032 0.8626107 0.09900104
## 0.4 0.0003084622 0.1527835 0.8629949 0.09883071
## 0.4 0.0007125878 0.1522777 0.8638796 0.09853749
## 0.4 0.0016461703 0.1517960 0.8647653 0.09816823
## 0.4 0.0038028670 0.1512813 0.8657246 0.09790412
## 0.4 0.0087851163 0.1527729 0.8634153 0.09973034
## 0.4 0.0202947586 0.1567219 0.8575524 0.10244652
## 0.4 0.0468835259 0.1674084 0.8431901 0.11030906
## 0.4 0.1083070283 0.1900641 0.8220999 0.12713979
## 0.4 0.2502032890 0.2456477 0.7968665 0.17219318
## 0.5 0.0001335259 0.1529694 0.8626695 0.09897170
## 0.5 0.0003084622 0.1527206 0.8631031 0.09877948
## 0.5 0.0007125878 0.1521743 0.8640690 0.09847427
## 0.5 0.0016461703 0.1517015 0.8649410 0.09808645
## 0.5 0.0038028670 0.1514410 0.8654740 0.09816784
## 0.5 0.0087851163 0.1535069 0.8622717 0.10039370
## 0.5 0.0202947586 0.1585892 0.8546972 0.10366586
## 0.5 0.0468835259 0.1711919 0.8386196 0.11310210
## 0.5 0.1083070283 0.1988715 0.8144491 0.13394394
## 0.5 0.2502032890 0.2677720 0.7874492 0.19208881
## 0.6 0.0001335259 0.1529457 0.8627110 0.09894655
## 0.6 0.0003084622 0.1526476 0.8632329 0.09872871
## 0.6 0.0007125878 0.1521007 0.8642136 0.09841560
## 0.6 0.0016461703 0.1516403 0.8650668 0.09805262
## 0.6 0.0038028670 0.1516698 0.8651021 0.09848230
## 0.6 0.0087851163 0.1541771 0.8612517 0.10084110
## 0.6 0.0202947586 0.1606510 0.8515691 0.10511838
## 0.6 0.0468835259 0.1751425 0.8337697 0.11597593
## 0.6 0.1083070283 0.2072075 0.8085757 0.14014121
## 0.6 0.2502032890 0.2895134 0.7807597 0.21111363
## 0.7 0.0001335259 0.1529182 0.8627588 0.09892152
## 0.7 0.0003084622 0.1525582 0.8633865 0.09868078
## 0.7 0.0007125878 0.1520463 0.8643179 0.09835732
## 0.7 0.0016461703 0.1515912 0.8651754 0.09802856
## 0.7 0.0038028670 0.1519555 0.8646544 0.09881899
## 0.7 0.0087851163 0.1548004 0.8603025 0.10119692
## 0.7 0.0202947586 0.1627999 0.8483414 0.10680467
## 0.7 0.0468835259 0.1792009 0.8286142 0.11899322
## 0.7 0.1083070283 0.2158269 0.8020943 0.14685245
## 0.7 0.2502032890 0.3123587 0.7639857 0.23129960
## 0.8 0.0001335259 0.1528934 0.8628024 0.09889940
## 0.8 0.0003084622 0.1524796 0.8635221 0.09864034
## 0.8 0.0007125878 0.1519877 0.8644285 0.09830023
## 0.8 0.0016461703 0.1515406 0.8652735 0.09802800
## 0.8 0.0038028670 0.1522942 0.8641256 0.09918411
## 0.8 0.0087851163 0.1554853 0.8592392 0.10161487
## 0.8 0.0202947586 0.1649098 0.8451450 0.10842937
## 0.8 0.0468835259 0.1832344 0.8233507 0.12199727
## 0.8 0.1083070283 0.2242570 0.7962765 0.15379654
## 0.8 0.2502032890 0.3360986 0.7248864 0.25185135
## 0.9 0.0001335259 0.1528683 0.8628464 0.09887948
## 0.9 0.0003084622 0.1524011 0.8636585 0.09859931
## 0.9 0.0007125878 0.1519283 0.8645367 0.09825245
## 0.9 0.0016461703 0.1514541 0.8654270 0.09800839
## 0.9 0.0038028670 0.1526743 0.8635214 0.09958496
## 0.9 0.0087851163 0.1562250 0.8580869 0.10208126
## 0.9 0.0202947586 0.1667279 0.8425633 0.10988380
## 0.9 0.0468835259 0.1869510 0.8187765 0.12486550
## 0.9 0.1083070283 0.2328192 0.7897299 0.16118585
## 0.9 0.2502032890 0.3598416 0.6471565 0.27230177
## 1.0 0.0001335259 0.1528421 0.8628890 0.09885896
## 1.0 0.0003084622 0.1523370 0.8637698 0.09856552
## 1.0 0.0007125878 0.1518838 0.8646164 0.09822006
## 1.0 0.0016461703 0.1514135 0.8655058 0.09802221
## 1.0 0.0038028670 0.1530411 0.8629353 0.09994305
## 1.0 0.0087851163 0.1570340 0.8568153 0.10261590
## 1.0 0.0202947586 0.1683894 0.8402729 0.11115096
## 1.0 0.0468835259 0.1904441 0.8148559 0.12743546
## 1.0 0.1083070283 0.2409139 0.7855310 0.16832017
## 1.0 0.2502032890 0.3805446 0.5646772 0.29026265
##
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were alpha = 0.2 and lambda
## = 0.008785116.
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Which regularization method should we
choose?

I There’s no “best” type of penalty. It depends on the dataset and the
problem.

I We recommend trying different algorithms that use a range of penalty
strengths as part of the tuning process
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Advantages and Disadvantages

I The advantage of the Elastic Net model is that it enables effective
regularization via the Ridge penalty with the feature selection
characteristics of the Lasso penalty.

I Elastic Nets allow us to control multicollinearity concerns, perform
regression when p > n, and reduce excessive noise in our data so that
we can isolate the most influential variables while balancing prediction
accuracy.

I Elastic Nets, and regularization models in general, still assume linear
relationships between the features and the target variable.

I We can incorporate non-additive models with interactions, but it is
tedious and difficult for a large number of features.

I When non-linear relationships exist, its beneficial to start exploring
non-linear regression approaches.

Jan-Philipp Kolb
Regularization methods



Further packages

# https://cran.rstudio.com/web/packages/biglasso/biglasso.pdf
install.packages("biglasso")
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Lasso for other models than least squares

I Though originally defined for least squares, Lasso regularization is
easily extended to a wide variety of statistical models including
generalized linear models, generalized estimating equations,
proportional hazards models, and M-estimators, in a straightforward
fashion.

I Lasso’s ability to perform subset selection relies on the form of the
constraint and has a variety of interpretations including in terms of
geometry, Bayesian statistics, and convex analysis.

I The Lasso is closely related to basis pursuit denoising.
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Resources and Links
I Myers (1994) Classical and Modern Regression with

Applications

Links
A comprehensive beginners guide for Linear, Ridge and Lasso Regression

I Course for statistical learning - Youtube - Videos
I pcLasso: a new method for sparse regression
I Youtube - Lasso regression - clearly explained
I glmnet Vignette
I Regularization Methods in R
I A gentle introduction to logistic regression and Lasso regularisation

using R
I Penalized Regression in R
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https://www.amazon.com/Classical-Regression-Applications-Duxbury-Classic/dp/0534380166
https://www.amazon.com/Classical-Regression-Applications-Duxbury-Classic/dp/0534380166
https://www.analyticsvidhya.com/blog/2017/06/a-comprehensive-guide-for-linear-ridge-and-lasso-regression/
https://www.r-bloggers.com/in-depth-introduction-to-machine-learning-in-15-hours-of-expert-videos/
https://www.r-bloggers.com/pclasso-a-new-method-for-sparse-regression/
https://www.youtube.com/watch?v=NGf0voTMlcs
https://web.stanford.edu/~hastie/glmnet/glmnet_alpha.html
https://www.geo.fu-berlin.de/en/v/soga/Geodata-analysis/multiple-regression/Regularization-Methods/Regularization-Methods-in-R/index.html
https://eight2late.wordpress.com/2017/07/11/a-gentle-introduction-to-logistic-regression-and-lasso-regularisation-using-r/
https://eight2late.wordpress.com/2017/07/11/a-gentle-introduction-to-logistic-regression-and-lasso-regularisation-using-r/
https://machinelearningmastery.com/penalized-regression-in-r/

