Jan-Philipp Kolb
10 Januar, 2020
mtcars
datasetHelp for the mtcars
dataset:
mtcars
mpg | cyl | disp | hp | drat | wt | qsec | vs | am | gear | carb | |
---|---|---|---|---|---|---|---|---|---|---|---|
Mazda RX4 | 21.0 | 6 | 160.0 | 110 | 3.90 | 2.620 | 16.46 | 0 | 1 | 4 | 4 |
Mazda RX4 Wag | 21.0 | 6 | 160.0 | 110 | 3.90 | 2.875 | 17.02 | 0 | 1 | 4 | 4 |
Datsun 710 | 22.8 | 4 | 108.0 | 93 | 3.85 | 2.320 | 18.61 | 1 | 1 | 4 | 1 |
Hornet 4 Drive | 21.4 | 6 | 258.0 | 110 | 3.08 | 3.215 | 19.44 | 1 | 0 | 3 | 1 |
Hornet Sportabout | 18.7 | 8 | 360.0 | 175 | 3.15 | 3.440 | 17.02 | 0 | 0 | 3 | 2 |
Valiant | 18.1 | 6 | 225.0 | 105 | 2.76 | 3.460 | 20.22 | 1 | 0 | 3 | 1 |
Duster 360 | 14.3 | 8 | 360.0 | 245 | 3.21 | 3.570 | 15.84 | 0 | 0 | 3 | 4 |
Merc 240D | 24.4 | 4 | 146.7 | 62 | 3.69 | 3.190 | 20.00 | 1 | 0 | 4 | 2 |
Merc 230 | 22.8 | 4 | 140.8 | 95 | 3.92 | 3.150 | 22.90 | 1 | 0 | 4 | 2 |
Merc 280 | 19.2 | 6 | 167.6 | 123 | 3.92 | 3.440 | 18.30 | 1 | 0 | 4 | 4 |
Merc 280C | 17.8 | 6 | 167.6 | 123 | 3.92 | 3.440 | 18.90 | 1 | 0 | 4 | 4 |
Merc 450SE | 16.4 | 8 | 275.8 | 180 | 3.07 | 4.070 | 17.40 | 0 | 0 | 3 | 3 |
Merc 450SL | 17.3 | 8 | 275.8 | 180 | 3.07 | 3.730 | 17.60 | 0 | 0 | 3 | 3 |
Merc 450SLC | 15.2 | 8 | 275.8 | 180 | 3.07 | 3.780 | 18.00 | 0 | 0 | 3 | 3 |
Cadillac Fleetwood | 10.4 | 8 | 472.0 | 205 | 2.93 | 5.250 | 17.98 | 0 | 0 | 3 | 4 |
Lincoln Continental | 10.4 | 8 | 460.0 | 215 | 3.00 | 5.424 | 17.82 | 0 | 0 | 3 | 4 |
Chrysler Imperial | 14.7 | 8 | 440.0 | 230 | 3.23 | 5.345 | 17.42 | 0 | 0 | 3 | 4 |
Fiat 128 | 32.4 | 4 | 78.7 | 66 | 4.08 | 2.200 | 19.47 | 1 | 1 | 4 | 1 |
Honda Civic | 30.4 | 4 | 75.7 | 52 | 4.93 | 1.615 | 18.52 | 1 | 1 | 4 | 2 |
Toyota Corolla | 33.9 | 4 | 71.1 | 65 | 4.22 | 1.835 | 19.90 | 1 | 1 | 4 | 1 |
Toyota Corona | 21.5 | 4 | 120.1 | 97 | 3.70 | 2.465 | 20.01 | 1 | 0 | 3 | 1 |
Dodge Challenger | 15.5 | 8 | 318.0 | 150 | 2.76 | 3.520 | 16.87 | 0 | 0 | 3 | 2 |
AMC Javelin | 15.2 | 8 | 304.0 | 150 | 3.15 | 3.435 | 17.30 | 0 | 0 | 3 | 2 |
Camaro Z28 | 13.3 | 8 | 350.0 | 245 | 3.73 | 3.840 | 15.41 | 0 | 0 | 3 | 4 |
Pontiac Firebird | 19.2 | 8 | 400.0 | 175 | 3.08 | 3.845 | 17.05 | 0 | 0 | 3 | 2 |
Fiat X1-9 | 27.3 | 4 | 79.0 | 66 | 4.08 | 1.935 | 18.90 | 1 | 1 | 4 | 1 |
Porsche 914-2 | 26.0 | 4 | 120.3 | 91 | 4.43 | 2.140 | 16.70 | 0 | 1 | 5 | 2 |
Lotus Europa | 30.4 | 4 | 95.1 | 113 | 3.77 | 1.513 | 16.90 | 1 | 1 | 5 | 2 |
Ford Pantera L | 15.8 | 8 | 351.0 | 264 | 4.22 | 3.170 | 14.50 | 0 | 1 | 5 | 4 |
Ferrari Dino | 19.7 | 6 | 145.0 | 175 | 3.62 | 2.770 | 15.50 | 0 | 1 | 5 | 6 |
Maserati Bora | 15.0 | 8 | 301.0 | 335 | 3.54 | 3.570 | 14.60 | 0 | 1 | 5 | 8 |
Volvo 142E | 21.4 | 4 | 121.0 | 109 | 4.11 | 2.780 | 18.60 | 1 | 1 | 4 | 2 |
mtcars
##
## Call:
## lm(formula = mpg ~ wt, data = mtcars)
##
## Coefficients:
## (Intercept) wt
## 37.285 -5.344
##
## Call:
## lm(formula = mpg ~ wt, data = mtcars)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5432 -2.3647 -0.1252 1.4096 6.8727
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 37.2851 1.8776 19.858 < 2e-16 ***
## wt -5.3445 0.5591 -9.559 1.29e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.046 on 30 degrees of freedom
## Multiple R-squared: 0.7528, Adjusted R-squared: 0.7446
## F-statistic: 91.38 on 1 and 30 DF, p-value: 1.294e-10
## Estimate Std. Error t value Pr(>|t|)
## wt 5.291624 0.5931801 8.920771 4.55314e-10
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 39.686261 1.7149840 23.140893 3.043182e-20
## wt -3.190972 0.7569065 -4.215808 2.220200e-04
## cyl -1.507795 0.4146883 -3.635972 1.064282e-03
as.formula
## [1] "formula"
# effect of cyl and interaction effect:
m3a<-lm(mpg~wt*cyl,data=mtcars)
# only interaction effect:
m3b<-lm(mpg~wt:cyl,data=mtcars)
setdiff
## [1] "mpg" "cyl" "disp" "hp" "drat" "wt" "qsec" "vs" "am" "gear"
## [11] "carb"
## [1] "cyl" "disp" "hp" "drat" "wt" "qsec" "vs" "am" "gear" "carb"
model.matrix
model.matrix
the qualitative variables are automatically dummy encoded## (Intercept) log(wt)
## Mazda RX4 1 0.9631743
## Mazda RX4 Wag 1 1.0560527
## Datsun 710 1 0.8415672
## Hornet 4 Drive 1 1.1678274
## Hornet Sportabout 1 1.2354715
## Valiant 1 1.2412686
## Duster 360 1 1.2725656
## Merc 240D 1 1.1600209
## Merc 230 1 1.1474025
## Merc 280 1 1.2354715
## Merc 280C 1 1.2354715
## Merc 450SE 1 1.4036430
## Merc 450SL 1 1.3164082
## Merc 450SLC 1 1.3297240
## Cadillac Fleetwood 1 1.6582281
## Lincoln Continental 1 1.6908336
## Chrysler Imperial 1 1.6761615
## Fiat 128 1 0.7884574
## Honda Civic 1 0.4793350
## Toyota Corolla 1 0.6070445
## Toyota Corona 1 0.9021918
## Dodge Challenger 1 1.2584610
## AMC Javelin 1 1.2340169
## Camaro Z28 1 1.3454724
## Pontiac Firebird 1 1.3467736
## Fiat X1-9 1 0.6601073
## Porsche 914-2 1 0.7608058
## Lotus Europa 1 0.4140944
## Ford Pantera L 1 1.1537316
## Ferrari Dino 1 1.0188473
## Maserati Bora 1 1.2725656
## Volvo 142E 1 1.0224509
## attr(,"assign")
## [1] 0 1
Matrix::sparse.model.matrix
for increased efficiency on large dimension data.## (Intercept) log(wt):cyl
## Mazda RX4 1 5.779046
## Mazda RX4 Wag 1 6.336316
## Datsun 710 1 3.366269
## Hornet 4 Drive 1 7.006964
## Hornet Sportabout 1 9.883772
## Valiant 1 7.447612
## Duster 360 1 10.180525
## Merc 240D 1 4.640084
## Merc 230 1 4.589610
## Merc 280 1 7.412829
## Merc 280C 1 7.412829
## Merc 450SE 1 11.229144
## Merc 450SL 1 10.531266
## Merc 450SLC 1 10.637792
## Cadillac Fleetwood 1 13.265825
## Lincoln Continental 1 13.526668
## Chrysler Imperial 1 13.409292
## Fiat 128 1 3.153829
## Honda Civic 1 1.917340
## Toyota Corolla 1 2.428178
## Toyota Corona 1 3.608767
## Dodge Challenger 1 10.067688
## AMC Javelin 1 9.872135
## Camaro Z28 1 10.763779
## Pontiac Firebird 1 10.774189
## Fiat X1-9 1 2.640429
## Porsche 914-2 1 3.043223
## Lotus Europa 1 1.656378
## Ford Pantera L 1 9.229853
## Ferrari Dino 1 6.113084
## Maserati Bora 1 10.180525
## Volvo 142E 1 4.089804
## attr(,"assign")
## [1] 0 1
# disp - Displacement (cu.in.)
m3d<-lm(mpg~wt*disp,data=mtcars)
m3dsum <- summary(m3d)
m3dsum$coefficients
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 44.08199770 3.123062627 14.114990 2.955567e-14
## wt -6.49567966 1.313382622 -4.945763 3.216705e-05
## disp -0.05635816 0.013238696 -4.257078 2.101721e-04
## wt:disp 0.01170542 0.003255102 3.596022 1.226988e-03
m3
is now a special regression object## Mazda RX4 Mazda RX4 Wag Datsun 710 Hornet 4 Drive
## 22.27914 21.46545 26.25203 20.38052
## Hornet Sportabout Valiant
## 16.64696 19.59873
## Mazda RX4 Mazda RX4 Wag Datsun 710 Hornet 4 Drive
## -1.2791447 -0.4654468 -3.4520262 1.0194838
## Hornet Sportabout Valiant
## 2.0530424 -1.4987281
## [1] 21.0 21.0 22.8 21.4 18.7 18.1
## Mazda RX4 Mazda RX4 Wag Datsun 710 Hornet 4 Drive
## 23.28261 21.91977 24.88595 20.10265
## Hornet Sportabout Valiant
## 18.90014 18.79325
## [1] 8.697561
## [1] 5.974124
Metrics
to compute mse## [1] 5.974124
visreg
-packagetype
is conditional
.mpg
and wt
plus regression line and confidence bandsvisreg
:## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 33.990794 1.8877934 18.005569 6.257246e-17
## cyl6 -4.255582 1.3860728 -3.070244 4.717834e-03
## cyl8 -6.070860 1.6522878 -3.674214 9.991893e-04
## wt -3.205613 0.7538957 -4.252065 2.130435e-04
visreg
- Interactions## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 39.571196 3.193940 12.3894599 2.058359e-12
## cyl6 -11.162351 9.355346 -1.1931522 2.435843e-01
## cyl8 -15.703167 4.839464 -3.2448150 3.223216e-03
## wt -5.647025 1.359498 -4.1537586 3.127578e-04
## cyl6:wt 2.866919 3.117330 0.9196716 3.661987e-01
## cyl8:wt 3.454587 1.627261 2.1229458 4.344037e-02
visreg
- Interactions overlayAmesHousing
and create a processed version of the Ames housing data with (at least) the variables Sale_Price
, Gr_Liv_Area
and TotRms_AbvGrd
Sale_Price
as dependent and Gr_Liv_Area
and TotRms_AbvGrd
as independent variables. Then create seperated models for the two independent variables. Compare the results. What do you think?Gr_Liv_Area
: Above grade (ground) living area square feetTotRms_AbvGrd
: Total rooms above grade (does not include bathroomsMS_SubClass
: Identifies the type of dwelling involved in the sale.MS_Zoning
: Identifies the general zoning classification of the sale.Lot_Frontage
: Linear feet of street connected to propertyLot_Area
: Lot size in square feetStreet
: Type of road access to propertyAlley
: Type of alley access to propertyLot_Shape
: General shape of propertyLand_Contour
: Flatness of the propertGr_Liv_Area
and TotRms_AbvGrd
Sale_Price
).ames_data <- AmesHousing::make_ames()
cor(ames_data[,c("Sale_Price","Gr_Liv_Area","TotRms_AbvGrd")])
## Sale_Price Gr_Liv_Area TotRms_AbvGrd
## Sale_Price 1.0000000 0.7067799 0.4954744
## Gr_Liv_Area 0.7067799 1.0000000 0.8077721
## TotRms_AbvGrd 0.4954744 0.8077721 1.0000000
##
## Call:
## lm(formula = Sale_Price ~ Gr_Liv_Area + TotRms_AbvGrd, data = ames_data)
##
## Coefficients:
## (Intercept) Gr_Liv_Area TotRms_AbvGrd
## 42767.6 139.4 -11025.9
Gr_Liv_Area
but a negative coefficient for TotRms_AbvGrd
, suggesting one has a positive impact to Sale_Price and the other a negative impact.Gr_Liv_Area
effect is now smaller and the TotRms_AbvGrd
is positive with a much larger magnitude.## (Intercept) Gr_Liv_Area
## 13289.634 111.694
## (Intercept) TotRms_AbvGrd
## 18665.40 25163.83
Cross-validation is a powerful preventative measure against overfitting.
Use your initial training data to generate multiple mini train-test splits. Use these splits to tune your model.
training.samples <- ames_data$Sale_Price %>%
createDataPartition(p = 0.8, list = FALSE)
train.data <- ames_data[training.samples, ]
test.data <- ames_data[-training.samples, ]
model <- lm(Sale_Price ~ Gr_Liv_Area + TotRms_AbvGrd,
data = train.data)
# Make predictions and compute the R2, RMSE and MAE
(predictions <- model %>% predict(test.data))
## 1 2 3 4 5 6 7 8
## 195972.89 113910.73 216297.69 208286.80 253239.40 124729.26 123142.35 174473.16
## 9 10 11 12 13 14 15 16
## 129673.13 179661.17 116825.18 207615.39 179355.98 161533.64 136951.61 164936.36
## 17 18 19 20 21 22 23 24
## 308445.96 169285.15 181003.94 181309.12 247166.37 117618.64 208057.91 274113.52
## 25 26 27 28 29 30 31 32
## 174167.98 170383.79 288884.09 162082.96 142688.94 145771.24 213169.63 153293.85
## 33 34 35 36 37 38 39 40
## 179935.83 169910.75 141071.50 160129.82 132038.26 177814.84 89740.69 238423.02
## 41 42 43 44 45 46 47 48
## 241398.52 215687.33 147800.66 113361.41 179417.03 205677.54 107425.71 206409.95
## 49 50 51 52 53 54 55 56
## 148075.32 178150.54 134540.72 113636.07 111164.14 219730.94 185917.29 144672.60
## 57 58 59 60 61 62 63 64
## 122699.84 144809.93 222904.76 267597.98 206577.80 216908.06 220524.39 164554.89
## 65 66 67 68 69 70 71 72
## 227665.54 154728.20 215336.38 317586.01 259770.18 217838.84 184299.86 188892.78
## 73 74 75 76 77 78 79 80
## 188785.98 178669.34 225910.77 191166.34 109516.18 126407.74 126407.74 126407.74
## 81 82 83 84 85 86 87 88
## 168506.93 161258.98 204487.33 355153.32 206577.80 196766.34 203800.68 199100.95
## 89 90 91 92 93 94 95 96
## 166202.85 299626.33 203007.23 157352.70 182102.58 168400.13 161884.58 198582.15
## 97 98 99 100 101 102 103 104
## 263920.60 222614.86 202290.06 288197.44 178669.34 211079.16 178562.53 203907.49
## 105 106 107 108 109 110 111 112
## 214451.36 244969.09 136402.29 155658.98 178837.19 248814.32 215855.18 117511.83
## 113 114 115 116 117 118 119 120
## 125446.43 256291.17 209568.53 170109.13 216740.20 163349.45 179111.85 171085.68
## 121 122 123 124 125 126 127 128
## 171284.05 163181.60 208363.09 109516.18 208775.08 171146.72 182682.42 115390.84
## 129 130 131 132 133 134 135 136
## 144779.41 169498.76 144504.75 168979.97 134723.81 154224.64 127750.52 262150.55
## 137 138 139 140 141 142 143 144
## 169224.11 122531.99 110309.64 153843.17 122531.99 180347.82 159778.87 249684.06
## 145 146 147 148 149 150 151 152
## 204258.43 130558.16 86063.31 172077.51 142368.52 225224.13 182957.08 166279.13
## 153 154 155 156 157 158 159 160
## 100894.93 136539.62 202213.77 127506.38 196964.72 219318.95 224369.62 202229.01
## 161 162 163 164 165 166 167 168
## 161228.46 199680.79 124179.94 120121.09 230656.27 195393.04 152469.87 165180.50
## 169 170 171 172 173 174 175 176
## 188114.57 260517.88 210804.50 164997.40 96332.52 253071.55 216602.87 186253.00
## 177 178 179 180 181 182 183 184
## 118473.14 118473.14 125232.82 134205.02 138080.77 97873.67 156223.54 131656.80
## 185 186 187 188 189 190 191 192
## 122699.84 188450.27 148899.30 208958.17 148349.98 231892.24 152988.67 194080.79
## 193 194 195 196 197 198 199 200
## 241459.56 132587.58 159641.54 189274.25 80570.12 113254.61 118030.63 167606.67
## 201 202 203 204 205 206 207 208
## 195530.37 209904.24 237003.96 202183.25 275761.48 189457.34 140690.04 112125.45
## 209 210 211 212 213 214 215 216
## 192676.97 236286.79 210697.69 192814.30 159504.21 267811.59 184055.72 224430.67
## 217 218 219 220 221 222 223 224
## 318348.94 148182.13 347417.09 177708.03 189167.44 130558.16 137561.97 113361.41
## 225 226 227 228 229 230 231 232
## 296513.51 185810.48 284626.87 236347.84 323628.52 266499.34 184849.18 298878.64
## 233 234 235 236 237 238 239 240
## 161976.15 204761.99 218983.24 203495.50 217228.48 266346.77 289708.07 282963.67
## 241 242 243 244 245 246 247 248
## 185261.16 175815.93 214756.54 175815.93 219807.22 215138.01 201466.08 204929.84
## 249 250 251 252 253 254 255 256
## 207096.60 212925.49 116108.01 176090.59 185841.01 204685.71 173954.36 350545.15
## 257 258 259 260 261 262 263 264
## 172397.93 172397.93 129673.13 166752.17 123142.35 121326.54 108173.41 193668.80
## 265 266 267 268 269 270 271 272
## 146259.51 230381.61 115833.35 175510.75 152195.21 106937.44 166477.51 165149.97
## 273 274 275 276 277 278 279 280
## 184818.65 131900.93 114322.72 99216.45 125751.62 130527.63 281224.15 140003.39
## 281 282 283 284 285 286 287 288
## 215061.72 209324.40 90671.48 173420.28 207340.73 164081.86 105945.61 197346.18
## 289 290 291 292 293 294 295 296
## 189518.39 179493.31 133686.22 141971.77 133686.22 127063.87 111545.60 169636.09
## 297 298 299 300 301 302 303 304
## 94303.10 204899.32 258915.68 258045.94 156284.58 175846.46 143436.63 191852.99
## 305 306 307 308 309 310 311 312
## 126819.73 206577.80 138630.09 235935.85 224979.99 129627.37 138019.73 166614.84
## 313 314 315 316 317 318 319 320
## 129627.37 134479.67 137912.92 109516.18 258427.41 238270.45 314595.28 160435.00
## 321 322 323 324 325 326 327 328
## 110508.01 234699.88 117069.32 100177.76 160572.33 200504.77 207340.73 133243.71
## 329 330 331 332 333 334 335 336
## 211659.00 213825.76 201084.61 209736.39 139011.56 137699.30 102924.35 208881.88
## 337 338 339 340 341 342 343 344
## 158619.19 203938.01 172077.51 201084.61 237827.94 225086.80 227802.87 121433.35
## 345 346 347 348 349 350 351 352
## 171665.52 163837.72 126545.07 201191.42 322148.42 244526.58 325001.82 274021.95
## 353 354 355 356 357 358 359 360
## 166752.17 169666.62 161533.64 190647.55 173862.79 219486.80 161808.30 168506.93
## 361 362 363 364 365 366 367 368
## 146091.66 231373.44 160984.32 200642.10 300831.78 286717.34 248646.47 194431.74
## 369 370 371 372 373 374 375 376
## 179767.97 210392.51 147831.18 204899.32 135746.17 203724.40 172443.73 162525.47
## 377 378 379 380 381 382 383 384
## 281773.47 311467.22 126758.69 178501.48 198612.67 127063.87 164280.23 172397.93
## 385 386 387 388 389 390 391 392
## 125965.23 126712.92 93479.12 94028.44 124729.26 222065.54 149723.28 122531.99
## 393 394 395 396 397 398 399 400
## 206242.10 130558.16 123493.29 136402.29 120945.07 123798.48 169498.76 176777.24
## 401 402 403 404 405 406 407 408
## 146976.68 112262.78 173206.67 108142.88 164280.23 281987.08 218220.31 131870.41
## 409 410 411 412 413 414 415 416
## 155109.66 205662.25 106220.27 128879.68 122531.99 113636.07 168537.46 241352.75
## 417 418 419 420 421 422 423 424
## 240299.88 312321.72 155155.42 133411.56 171802.85 305333.14 312306.44 251286.26
## 425 426 427 428 429 430 431 432
## 157352.70 161152.17 180866.61 215061.72 251728.77 126819.73 126819.73 213825.76
## 433 434 435 436 437 438 439 440
## 200642.10 120472.04 133686.22 111988.12 266423.05 205997.96 242115.69 151432.28
## 441 442 443 444 445 446 447 448
## 111545.60 102924.35 132557.06 145359.25 121509.63 268742.38 135654.60 164387.04
## 449 450 451 452 453 454 455 456
## 209568.53 218662.82 127613.19 116108.01 139179.41 173237.19 281529.33 287098.80
## 457 458 459 460 461 462 463 464
## 140827.37 136707.47 176365.25 100177.76 118061.15 189136.92 164905.84 252003.43
## 465 466 467 468 469 470 471 472
## 250019.77 223789.78 140247.53 185841.01 233524.96 317799.63 294453.57 318928.79
## 473 474 475 476 477 478 479 480
## 180012.11 142200.66 130222.45 109516.18 129673.13 244557.10 227940.20 225803.97
## 481 482 483 484 485 486 487 488
## 167026.83 167576.15 167576.15 160435.00 167026.83 185703.68 164631.18 227116.22
## 489 490 491 492 493 494 495 496
## 209049.74 185367.97 175098.76 286488.44 196140.74 186222.47 220829.57 188694.41
## 497 498 499 500 501 502 503 504
## 206272.62 157993.59 115390.84 131488.94 309620.89 278172.37 334340.24 281163.10
## 505 506 507 508 509 510 511 512
## 261418.14 211308.06 150333.64 144291.13 103031.16 109516.18 192509.12 93448.60
## 513 514 515 516 517 518 519 520
## 135547.79 150821.92 384770.79 129291.67 149448.62 100208.28 169880.23 161533.64
## 521 522 523 524 525 526 527 528
## 143680.77 143406.11 133686.22 137638.26 173801.75 214176.70 109516.18 177463.89
## 529 530 531 532 533 534 535 536
## 130939.62 196278.07 197147.81 114078.59 215397.43 164936.36 165378.87 125827.90
## 537 538 539 540 541 542 543 544
## 130283.50 168781.59 204899.32 224018.68 202015.40 179249.18 124866.59 223301.51
## 545 546 547 548 549 550 551 552
## 137363.60 155155.42 145603.39 190205.04 198887.33 170322.74 185566.35 189136.92
## 553 554 555 556 557 558 559 560
## 223682.98 209538.01 220936.38 159443.17 159611.02 181034.46 147251.34 194157.08
## 561 562 563 564 565 566 567 568
## 264027.40 138080.77 138080.77 203251.36 199863.88 204350.00 174335.83 221790.88
## 569 570 571 572 573 574 575 576
## 124897.11 156177.78 90045.88 110309.64 152027.36 90976.66 67935.78 108249.69
## 577 578 579 580 581 582 583 584
## 214130.94 215748.37 198658.44 136264.96 129673.13 194706.40 145496.58 136646.43
Regression - r-bloggers
The complete book of Faraway- very intuitive
Good introduction on Quick-R
ggeffects
- Create Tidy Data Frames of Marginal Effects for ‘ggplot’ from Model Outputs
Shiny App - Simple Linear Regression
Shiny App - Multicollinearity in multiple regression